論文の概要: Optimization schemes for unitary tensor-network circuit
- arxiv url: http://arxiv.org/abs/2009.02606v3
- Date: Tue, 30 Mar 2021 22:03:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 18:42:10.187351
- Title: Optimization schemes for unitary tensor-network circuit
- Title(参考訳): ユニタリテンソルネットワーク回路の最適化手法
- Authors: Reza Haghshenas
- Abstract要約: 本稿では,異なるネットワーク構造を持つユニタリテンソルネットワーク回路の変分最適化について論じる。
アンザッツは、よく開発されたマルチスケールエンタングルメント再正規化アルゴリズムの一般化に基づいて実行される。
本稿では,異なるネットワーク構造に対するベンチマーク計算について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the variational optimization of a unitary tensor-network circuit
with different network structures. The ansatz is performed based on a
generalization of well-developed multi-scale entanglement renormalization
algorithm and also the conjugate-gradient method with an effective line search.
We present the benchmarking calculations for different network structures by
studying the Heisenberg model in a strongly disordered magnetic field and a
tensor-network $QR$-decomposition.
- Abstract(参考訳): 本稿では,ネットワーク構造が異なるユニタリテンソルネットワーク回路の変動最適化について述べる。
このアンザッツは, 十分に開発された多スケールエンタングルメント正規化アルゴリズムの一般化と, 有効線探索による共役勾配法に基づく。
本稿では,強乱磁場とテンソルネットワーク$qr$-decompositionにおけるハイゼンベルクモデルを用いて,異なるネットワーク構造のベンチマーク計算を行う。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Automatic structural optimization of tree tensor networks [0.0]
そこで本稿では,等距離線を局所的に再接続することで,ネットワーク構造を自動的に最適化するTTNアルゴリズムを提案する。
システムの基底状態に埋め込まれた絡み合い構造を,最適化TTNにおける完全二分木として効率的に可視化できることを実証した。
論文 参考訳(メタデータ) (2022-09-07T14:51:39Z) - Regularized scheme of time evolution tensor network algorithms [0.0]
量子格子系の時間発展をシミュレートするために正規化分解法を提案する。
プロパゲーターの結果として生じるコンパクト構造は、高階ベーカー・カンベル・ハウスドルフ級数を示す。
論文 参考訳(メタデータ) (2022-08-06T03:38:37Z) - Differentiable Programming of Isometric Tensor Networks [0.0]
微分プログラミングは、自動微分(auto-differentiation)として知られる勾配の自動計算による大規模最適化を可能にする新しいプログラミングパラダイムである。
ここでは、多スケールエンタングルメント再正規化アンサッツ(MERA)やテンソルネットワーク再正規化(TNR)に応用した等尺制約のあるテンソルネットワークに微分可能プログラミングを拡張した。
我々は1次元臨界量子イジングスピンチェーンと2次元古典イジングモデルを用いて数値解析を行った。
古典的モデルの1次元量子モデルと内部エネルギーの基底状態エネルギーを計算し、スケーリング作用素のスケーリング次元を計算し、それらがすべて一致することを確かめる。
論文 参考訳(メタデータ) (2021-10-08T05:29:41Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Deep learning architectures for inference of AC-OPF solutions [0.4061135251278187]
本稿では、AC-OPFソリューションの推論のためのニューラルネットワーク(NN)アーキテクチャの体系的比較について述べる。
本稿では,グラフ領域における電力網の抽象表現を構築することにより,モデルにおけるネットワークトポロジの活用の有効性を示す。
論文 参考訳(メタデータ) (2020-11-06T13:33:18Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z) - Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning [48.42916680063503]
本稿では,この問題クラスにおける近位アルゴリズムの適応型事前条件付け手法を提案する。
不活性エッジのネスト・フォレスト分解により局所収束速度が保証されることを示す。
この結果から,局所収束解析は近似アルゴリズムにおける可変指標選択の指針となることが示唆された。
論文 参考訳(メタデータ) (2020-02-27T16:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。