論文の概要: BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter
by Combining Deep Learning and Transfer Learning Models
- arxiv url: http://arxiv.org/abs/2009.02671v2
- Date: Thu, 1 Apr 2021 06:21:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 08:31:30.725322
- Title: BANANA at WNUT-2020 Task 2: Identifying COVID-19 Information on Twitter
by Combining Deep Learning and Transfer Learning Models
- Title(参考訳): banana at wnut-2020 task 2: ディープラーニングとトランスファー学習モデルを組み合わせたtwitter上のcovid-19情報の識別
- Authors: Tin Van Huynh, Luan Thanh Nguyen and Son T. Luu
- Abstract要約: 本稿では, WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweetsについて述べる。
このタスクのデータセットには、人間によってラベル付けされた英語の1万のツイートが含まれている。
実験結果から, システム上でのインフォーマルラベルのF1は, テストセットで88.81%の精度で達成できたことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The outbreak COVID-19 virus caused a significant impact on the health of
people all over the world. Therefore, it is essential to have a piece of
constant and accurate information about the disease with everyone. This paper
describes our prediction system for WNUT-2020 Task 2: Identification of
Informative COVID-19 English Tweets. The dataset for this task contains size
10,000 tweets in English labeled by humans. The ensemble model from our three
transformer and deep learning models is used for the final prediction. The
experimental result indicates that we have achieved F1 for the INFORMATIVE
label on our systems at 88.81% on the test set.
- Abstract(参考訳): 新型コロナウイルスの感染拡大は世界中の人々の健康に大きな影響を及ぼした。
したがって、病気に関する情報を誰とでも一定かつ正確なものにすることが不可欠である。
本稿では, WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweetsについて述べる。
このタスクのデータセットは、人間がラベル付けした英語のつぶやきサイズが10,000である。
3つの変圧器および深層学習モデルからのアンサンブルモデルを用いて最終予測を行う。
実験結果から, システム上でのインフォーマルラベルのF1を88.81%で達成したことがわかった。
関連論文リスト
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
本稿では,#SMM4H (Social Media Mining for Health) 2024 Workshopのタスク3とタスク5への参加について述べる。
タスク3は、屋外環境が社会不安の症状に与える影響を議論するツイートを中心にした多クラス分類タスクである。
タスク5は、子供の医学的障害を報告しているツイートに焦点を当てたバイナリ分類タスクを含む。
BART-baseやT5-smallのような事前訓練されたエンコーダデコーダモデルからの転送学習を適用し、与えられたツイートの集合のラベルを同定した。
論文 参考訳(メタデータ) (2024-04-30T17:06:20Z) - Human Behavior in the Time of COVID-19: Learning from Big Data [71.26355067309193]
2020年3月以降、新型コロナウイルスの感染者は6億人を超え、600万人以上が死亡している。
パンデミックはあらゆる面で人間の行動に影響を与え、変化をもたらした。
研究者は自然言語処理、コンピュータビジョン、音声信号処理、頻繁なパターンマイニング、機械学習といったビッグデータ技術を採用してきた。
論文 参考訳(メタデータ) (2023-03-23T17:19:26Z) - Two-Stage Classifier for COVID-19 Misinformation Detection Using BERT: a
Study on Indonesian Tweets [0.15229257192293202]
インドネシアでの新型コロナウイルスの誤情報検出に関する研究はいまだに少ない。
本研究では,ツイート誤報検出タスクに対して,IndoBERT事前学習言語モデルを用いた2段階分類モデルを提案する。
実験の結果、関連予測のためのBERTシーケンス分類器と誤情報検出のためのBi-LSTMの組み合わせは、87.02%の精度で他の機械学習モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-06-30T15:33:20Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Misleading the Covid-19 vaccination discourse on Twitter: An exploratory
study of infodemic around the pandemic [0.45593531937154413]
我々は7ヶ月(2020年9月~2021年3月)のコビッドウイルスワクチン接種に関連する中規模のツイートコーパス(20万件)を収集する。
Transfer Learningのアプローチに従えば、事前訓練されたTransformerベースのXLNetモデルを使用して、ツイートをミスリーディングまたは非ミスリーディングに分類する。
我々は、自然に誤解を招くコーパスのツイートの特徴と非誤解を招くツイートの特徴を調査・対比するためにこの手法を構築した。
いくつかのMLモデルは、最大90%の精度で予測に使用され、各特徴の重要性は、SHAP Explainable AI (X)を用いて説明される。
論文 参考訳(メタデータ) (2021-08-16T17:02:18Z) - NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for
Identify Informative COVID-19 English Tweets [0.0]
本稿では,WNUT-2020 Task2 において,NIT_COVID-19 チームによって提出された WNUT-2020 Task2 における COVID-19 英語のつぶやきを識別するためのモデルを提案する。
共用タスクWNUT 2020 Task2のモデルによる性能はF1スコアの89.14%である。
論文 参考訳(メタデータ) (2020-11-11T05:20:39Z) - Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying
Informative COVID-19 English Tweets [0.0]
本稿では、英語のつぶやきを前提として、そのツイートがCOVID-19に関する情報的内容を持つかどうかを自動的に識別するモデルを提案する。
インフォメーションクラスにおけるF1スコアの約1%は、トップパフォーマンスチームによる結果にしか影響しない競争的な結果を達成しました。
論文 参考訳(メタデータ) (2020-09-14T15:49:16Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
論文 参考訳(メタデータ) (2020-09-08T16:29:25Z) - TICO-19: the Translation Initiative for Covid-19 [112.5601530395345]
COvid-19の翻訳イニシアチブ(TICO-19)は、テストおよび開発データを、35の異なる言語でAIおよびMT研究者に提供した。
同じデータが表現されているすべての言語に変換されるため、テストや開発は、セット内の任意の言語のペアリングに対して行うことができる。
論文 参考訳(メタデータ) (2020-07-03T16:26:17Z) - CO-Search: COVID-19 Information Retrieval with Semantic Search, Question
Answering, and Abstractive Summarization [53.67205506042232]
CO-Searchは、新型コロナウイルスの文献上の複雑なクエリを処理するように設計された、レトリバーランサーセマンティック検索エンジンである。
ドメイン固有の比較的限られたデータセットを考慮し、文書の段落と引用の2部グラフを生成する。
TREC-COVID情報検索課題のデータに基づいて,本システムの評価を行った。
論文 参考訳(メタデータ) (2020-06-17T01:32:48Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。