Quantum finite-time thermodynamics: insight from a single qubit engine
- URL: http://arxiv.org/abs/2009.02801v1
- Date: Sun, 6 Sep 2020 19:22:53 GMT
- Title: Quantum finite-time thermodynamics: insight from a single qubit engine
- Authors: Roie Dann, Ronnie Kosloff and Peter Salamon
- Abstract summary: We study the quantum origin of irreversibility, originating from heat transport, quantum friction and thermalization in the presence of external driving.
Our analysis highlights the role of coherence and the quantum origin of entropy production.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating time into thermodynamics allows addressing the tradeoff between
efficiency and power. A qubit engine serves as a toy model to study this
tradeoff from first principles, based on the quantum theory of open systems. We
study the quantum origin of irreversibility, originating from heat transport,
quantum friction and thermalization in the presence of external driving. We
construct various finite-time engine cycles based on the Otto and Carnot
templates. Our analysis highlights the role of coherence and the quantum origin
of entropy production.
Related papers
- Quantum Thermodynamics of Small Systems: The Anyonic Otto Engine [0.0]
We study the quantum thermodynamics of small systems of anyons, with specific emphasis on the quantum Otto engine which uses, as its working medium, just one or two anyons.
arXiv Detail & Related papers (2024-01-14T00:09:25Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Leveraging Machine Learning to Gain Insights on Quantum Thermodynamic
Entropy [0.0]
We present a thermodynamic analysis of a quantum engine that uses a single quantum particle as its working fluid.
Our design is modeled after the classically-chaotic Szilard Map and involves a thermodynamic cycle of measurement, thermal-energy extraction, and memory reset.
arXiv Detail & Related papers (2023-05-08T18:16:28Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - The problem of engines in statistical physics [62.997667081978825]
Engines are open systems that can generate work cyclically, at the expense of an external disequilibrium.
Recent advances in the theory of open quantum systems point to a more realistic description of autonomous engines.
We show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion.
arXiv Detail & Related papers (2021-08-17T03:59:09Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Szilard Engines as Quantum Thermodynamical Systems [1.3764085113103222]
We analyze an engine whose working fluid consists of a single quantum particle.
We show that the quantum engine obeys the Second Law.
However, the quantum engine does so via substantially different mechanisms.
arXiv Detail & Related papers (2020-10-27T22:33:13Z) - The efficiency of simple Quantum Engine Stirling and Ericsson cycle [0.0]
The quantum engine cycle serves as an analogous representation of the macroscopic nature of heat engines and the quantum regime of thermal devices composed of a single element.
The efficiency of quantum engines is derived, which is found to be analogous to classical thermodynamic engines.
arXiv Detail & Related papers (2020-10-04T13:22:52Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.