論文の概要: A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data
- arxiv url: http://arxiv.org/abs/2009.03238v2
- Date: Fri, 22 Nov 2024 03:39:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:46.475680
- Title: A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data
- Title(参考訳): 静止機能MRIデータから臨床重症度を予測する統合ネットワーク最適化フレームワーク
- Authors: Niharika Shimona D'Souza, Mary Beth Nebel, Nicholas Wymbs, Stewart H. Mostofsky, Archana Venkataraman,
- Abstract要約: 静止状態fMRI(rs-fMRI)データから臨床重症度を予測する新しい枠組みを提案する。
フレームワークを2つの別々のデータセット上で10倍のクロスバリデーション設定で検証する。
- 参考スコア(独自算出の注目度): 3.276067241408604
- License:
- Abstract: We propose a novel optimization framework to predict clinical severity from resting state fMRI (rs-fMRI) data. Our model consists of two coupled terms. The first term decomposes the correlation matrices into a sparse set of representative subnetworks that define a network manifold. These subnetworks are modeled as rank-one outer-products which correspond to the elemental patterns of co-activation across the brain; the subnetworks are combined via patient-specific non-negative coefficients. The second term is a linear regression model that uses the patient-specific coefficients to predict a measure of clinical severity. We validate our framework on two separate datasets in a ten fold cross validation setting. The first is a cohort of fifty-eight patients diagnosed with Autism Spectrum Disorder (ASD). The second dataset consists of sixty three patients from a publicly available ASD database. Our method outperforms standard semi-supervised frameworks, which employ conventional graph theoretic and statistical representation learning techniques to relate the rs-fMRI correlations to behavior. In contrast, our joint network optimization framework exploits the structure of the rs-fMRI correlation matrices to simultaneously capture group level effects and patient heterogeneity. Finally, we demonstrate that our proposed framework robustly identifies clinically relevant networks characteristic of ASD.
- Abstract(参考訳): 静止状態fMRI(rs-fMRI)データから臨床重症度を予測するための新しい最適化フレームワークを提案する。
私たちのモデルは2つの結合項から成る。
最初の項は、相関行列をネットワーク多様体を定義する代表部分ネットのスパース集合に分解する。
これらのサブネットは、脳全体のコアクティベーションの要素パターンに対応するランクワンの外積としてモデル化され、サブネットは患者固有の非負の係数を介して結合される。
第2項は、患者固有の係数を用いて臨床重症度を予測する線形回帰モデルである。
フレームワークを2つの別々のデータセット上で10倍のクロスバリデーション設定で検証する。
1つ目は自閉症スペクトラム障害(ASD)と診断された58例のコホートである。
第2のデータセットは、公開されているASDデータベースから60,3人の患者で構成されている。
本手法は,従来のグラフ理論および統計的表現学習技術を用いて,RS-fMRI相関と挙動を関連づける,標準的な半教師付きフレームワークよりも優れている。
対照的に、我々の共同ネットワーク最適化フレームワークは、rs-fMRI相関行列の構造を利用して、グループレベルの効果と患者の不均一性を同時にキャプチャする。
最後に,本提案手法は臨床関連ネットワークの特徴を強く同定するものであることを実証する。
関連論文リスト
- Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
グラフ畳み込みネットワークを用いたドメイン不変モデル(DIM-GCN)を提案する。
まず,潜伏変数を病原性その他の疾患関連部位に明示的に分解するベイズネットワークを提案する。
マクロな特徴をよりよく捉えるために、我々は、GCN(Graph Convolutional Network)を介して、観察された臨床特性を再構築の目的として活用する。
論文 参考訳(メタデータ) (2022-04-21T08:23:44Z) - A Matrix Autoencoder Framework to Align the Functional and Structural
Connectivity Manifolds as Guided by Behavioral Phenotypes [10.444460609337106]
静止状態fMRI(rs-fMRI)から拡散イメージング(DTI)の構造コネクトームにマップする新しいマトリックスオートエンコーダを提案する。
我々は、Human Connectome Projectデータベースから275名の健常者のデータセットと、自閉症スペクトラム障害57名からなる第2の臨床データセットを検証した。
論文 参考訳(メタデータ) (2021-05-30T02:06:12Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
静止機能MRI(r-fMRI)接続と拡散テンソルイメージング(DTI)トラクトグラフィーから補完情報を共同でモデル化する新しい統合フレームワークを提案する。
本フレームワークは,コネクトロミクスデータの生成モデルと,行動スコアを予測するディープネットワークを結合する。
我々のハイブリッドモデルは、臨床結果予測における最先端のアプローチよりも優れており、脳組織の解釈可能なマルチモーダルニューラルシグネチャを学習する。
論文 参考訳(メタデータ) (2020-08-27T23:43:56Z) - A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism [5.200461964737113]
我々のフレームワークの生成部分は、構造的に規則化された動的辞書学習(sr-DDL)モデルである。
本フレームワークの深部はLSTM-ANNブロックであり,Sr-DDL負荷の経時的変化をモデル化し,多次元的臨床的重症度を予測する。
自閉症スペクトラム障害(ASD)と診断された57例のマルチスコア予測課題における枠組みの検証を行った。
論文 参考訳(メタデータ) (2020-07-03T20:18:09Z) - Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data [3.276067241408604]
本稿では、ニューラルネットワークと辞書学習を組み合わせた統合フレームワークを提案し、静止状態機能MRIと行動データの間の複雑な相互作用をモデル化する。
自閉症スペクトラム障害(ASD)52例を用いたマルチスコア予測課題における組み合わせモデルの評価を行った。
統合されたフレームワークは,3種類の臨床重症度を予測するために,10倍のクロス・コンフィグレーション・セッティングにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-07-03T20:14:45Z) - A Coupled Manifold Optimization Framework to Jointly Model the
Functional Connectomics and Behavioral Data Spaces [5.382679710017696]
本稿では,コホートに共通する低次元行列多様体にfMRIデータを投影する結合多様体最適化フレームワークを提案する。
患者固有の負荷は、同時に第2の非線形多様体を介して、興味の行動尺度にマップされる。
自閉症スペクトラム障害58例の安静時fMRIの枠組みを検証した。
論文 参考訳(メタデータ) (2020-07-03T20:12:51Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。