論文の概要: A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism
- arxiv url: http://arxiv.org/abs/2007.01931v2
- Date: Fri, 22 Nov 2024 01:30:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:16:32.817317
- Title: A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism
- Title(参考訳): 自閉症におけるスペクトルレベル欠陥予測のためのマルチモーダル・動的接続性統合のための深部生成ハイブリッドモデル
- Authors: Niharika Shimona D'Souza, Mary Beth Nebel, Deana Crocetti, Nicholas Wymbs, Joshua Robinson, Stewart Mostofsky, Archana Venkataraman,
- Abstract要約: 我々のフレームワークの生成部分は、構造的に規則化された動的辞書学習(sr-DDL)モデルである。
本フレームワークの深部はLSTM-ANNブロックであり,Sr-DDL負荷の経時的変化をモデル化し,多次元的臨床的重症度を予測する。
自閉症スペクトラム障害(ASD)と診断された57例のマルチスコア予測課題における枠組みの検証を行った。
- 参考スコア(独自算出の注目度): 5.200461964737113
- License:
- Abstract: We propose an integrated deep-generative framework, that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract predictive biomarkers of a disease. The generative part of our framework is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying patient-specific loadings. This matrix factorization is guided by the DTI tractography matrices to learn anatomically informed connectivity profiles. The deep part of our framework is an LSTM-ANN block, which models the temporal evolution of the patient sr-DDL loadings to predict multidimensional clinical severity. Our coupled optimization procedure collectively estimates the basis networks, the patient-specific dynamic loadings, and the neural network weights. We validate our framework on a multi-score prediction task in 57 patients diagnosed with Autism Spectrum Disorder (ASD). Our hybrid model outperforms state-of-the-art baselines in a five-fold cross validated setting and extracts interpretable multimodal neural signatures of brain dysfunction in ASD.
- Abstract(参考訳): 本稿では, 静止機能型MRI(r-fMRI)と拡散テンソル画像(DTI)から補完的な情報を共同でモデル化し, 疾患の予測バイオマーカーを抽出する統合型ディープラーニングフレームワークを提案する。
本フレームワークの生成部は構造規則化動的辞書学習(sr-DDL)モデルであり,動的rs-fMRI相関行列を共有ベースネットワークと時間差の患者固有の負荷の集合に分解する。
この行列分解は、DTIトラクトグラフィー行列によって導かれ、解剖学的に情報を得た接続プロファイルを学習する。
本フレームワークの深部はLSTM-ANNブロックであり,Sr-DDL負荷の経時的変化をモデル化し,多次元的臨床的重症度を予測する。
我々の結合最適化手法は、基本ネットワーク、患者固有の動的負荷、ニューラルネットワークの重みを総括して推定する。
自閉症スペクトラム障害(ASD)と診断された57例を対象に,多スコア予測課題の枠組みを検証した。
われわれのハイブリッドモデルは5倍のクロス・セッティングで最先端のベースラインを上回り、ASDにおける脳機能障害の解釈可能なマルチモーダル・ニューラルシグネチャを抽出する。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - MHATC: Autism Spectrum Disorder identification utilizing multi-head
attention encoder along with temporal consolidation modules [11.344829880346353]
静止状態fMRIは、ネットワークベースの機能接続を用いて自閉症スペクトラム障害(ASD)の診断に一般的に用いられる。
ASD患者として個人を分類するための多面的注意と時間的統合モジュールからなる新しいディープラーニングアーキテクチャ(MHATC)を提案する。
論文 参考訳(メタデータ) (2021-12-27T07:50:16Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - A Matrix Autoencoder Framework to Align the Functional and Structural
Connectivity Manifolds as Guided by Behavioral Phenotypes [10.444460609337106]
静止状態fMRI(rs-fMRI)から拡散イメージング(DTI)の構造コネクトームにマップする新しいマトリックスオートエンコーダを提案する。
我々は、Human Connectome Projectデータベースから275名の健常者のデータセットと、自閉症スペクトラム障害57名からなる第2の臨床データセットを検証した。
論文 参考訳(メタデータ) (2021-05-30T02:06:12Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
静止機能MRI(r-fMRI)接続と拡散テンソルイメージング(DTI)トラクトグラフィーから補完情報を共同でモデル化する新しい統合フレームワークを提案する。
本フレームワークは,コネクトロミクスデータの生成モデルと,行動スコアを予測するディープネットワークを結合する。
我々のハイブリッドモデルは、臨床結果予測における最先端のアプローチよりも優れており、脳組織の解釈可能なマルチモーダルニューラルシグネチャを学習する。
論文 参考訳(メタデータ) (2020-08-27T23:43:56Z) - A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data [3.276067241408604]
静止状態fMRI(rs-fMRI)データから臨床重症度を予測する新しい枠組みを提案する。
フレームワークを2つの別々のデータセット上で10倍のクロスバリデーション設定で検証する。
論文 参考訳(メタデータ) (2020-08-27T23:43:25Z) - Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data [3.276067241408604]
本稿では、ニューラルネットワークと辞書学習を組み合わせた統合フレームワークを提案し、静止状態機能MRIと行動データの間の複雑な相互作用をモデル化する。
自閉症スペクトラム障害(ASD)52例を用いたマルチスコア予測課題における組み合わせモデルの評価を行った。
統合されたフレームワークは,3種類の臨床重症度を予測するために,10倍のクロス・コンフィグレーション・セッティングにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-07-03T20:14:45Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。