論文の概要: Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations
- arxiv url: http://arxiv.org/abs/2008.12410v2
- Date: Fri, 22 Nov 2024 04:16:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:16:31.689077
- Title: Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations
- Title(参考訳): Deep sr-DDL:多次元臨床評価のための多モードおよび動的機能接続データの統合のための深部構造規則化動的辞書学習
- Authors: Niharika Shimona D'Souza, Mary Beth Nebel, Deana Crocetti, Nicholas Wymbs, Joshua Robinson, Stewart H. Mostofsky, Archana Venkataraman,
- Abstract要約: 静止機能MRI(r-fMRI)接続と拡散テンソルイメージング(DTI)トラクトグラフィーから補完情報を共同でモデル化する新しい統合フレームワークを提案する。
本フレームワークは,コネクトロミクスデータの生成モデルと,行動スコアを予測するディープネットワークを結合する。
我々のハイブリッドモデルは、臨床結果予測における最先端のアプローチよりも優れており、脳組織の解釈可能なマルチモーダルニューラルシグネチャを学習する。
- 参考スコア(独自算出の注目度): 5.200461964737113
- License:
- Abstract: We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography to extract biomarkers of brain connectivity predictive of behavior. Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores. The generative component is a structurally-regularized Dynamic Dictionary Learning (sr-DDL) model that decomposes the dynamic rs-fMRI correlation matrices into a collection of shared basis networks and time varying subject-specific loadings. We use the DTI tractography to regularize this matrix factorization and learn anatomically informed functional connectivity profiles. The deep component of our framework is an LSTM-ANN block, which uses the temporal evolution of the subject-specific sr-DDL loadings to predict multidimensional clinical characterizations. Our joint optimization strategy collectively estimates the basis networks, the subject-specific time-varying loadings, and the neural network weights. We validate our framework on a dataset of neurotypical individuals from the Human Connectome Project (HCP) database to map to cognition and on a separate multi-score prediction task on individuals diagnosed with Autism Spectrum Disorder (ASD) in a five-fold cross validation setting. Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
- Abstract(参考訳): 本研究では, 静止機能MRI(r-fMRI)と拡散テンソルイメージング(DTI)のトラクトグラフィーから相補的情報を共同でモデル化し, 動作予測のための生体マーカーを抽出するフレームワークを提案する。
本フレームワークは,コネクトロミクスデータの生成モデルと,行動スコアを予測するディープネットワークを結合する。
生成成分は構造的に規則化された動的辞書学習(sr-DDL)モデルであり、動的rs-fMRI相関行列を共有ベースネットワークのコレクションに分解し、時間的に異なる主観的なロードを行う。
DTIトラクトグラフィーを用いて、この行列分解を正規化し、解剖学的に情報を得た機能接続プロファイルを学習する。
本フレームワークの深部はLSTM-ANNブロックであり,多次元臨床像の予測に主観的Sr-DDL負荷の時間的変化を利用する。
我々の共同最適化戦略は、基本ネットワーク、主題固有の時間変化負荷、ニューラルネットワークの重みを総括して推定する。
我々は,Human Connectome Project (HCP) データベースから,認知にマップする神経型個体のデータセットと,自閉症スペクトラム障害(ASD)と診断された個体の5倍の横断的検証環境における個別のマルチスコア予測タスクについて,その枠組みを検証した。
我々のハイブリッドモデルは、臨床結果予測における最先端のアプローチよりも優れており、脳組織の解釈可能なマルチモーダルニューラルシグネチャを学習する。
関連論文リスト
- Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - A Matrix Autoencoder Framework to Align the Functional and Structural
Connectivity Manifolds as Guided by Behavioral Phenotypes [10.444460609337106]
静止状態fMRI(rs-fMRI)から拡散イメージング(DTI)の構造コネクトームにマップする新しいマトリックスオートエンコーダを提案する。
我々は、Human Connectome Projectデータベースから275名の健常者のデータセットと、自閉症スペクトラム障害57名からなる第2の臨床データセットを検証した。
論文 参考訳(メタデータ) (2021-05-30T02:06:12Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - A Joint Network Optimization Framework to Predict Clinical Severity from Resting State Functional MRI Data [3.276067241408604]
静止状態fMRI(rs-fMRI)データから臨床重症度を予測する新しい枠組みを提案する。
フレームワークを2つの別々のデータセット上で10倍のクロスバリデーション設定で検証する。
論文 参考訳(メタデータ) (2020-08-27T23:43:25Z) - A Deep-Generative Hybrid Model to Integrate Multimodal and Dynamic Connectivity for Predicting Spectrum-Level Deficits in Autism [5.200461964737113]
我々のフレームワークの生成部分は、構造的に規則化された動的辞書学習(sr-DDL)モデルである。
本フレームワークの深部はLSTM-ANNブロックであり,Sr-DDL負荷の経時的変化をモデル化し,多次元的臨床的重症度を予測する。
自閉症スペクトラム障害(ASD)と診断された57例のマルチスコア予測課題における枠組みの検証を行った。
論文 参考訳(メタデータ) (2020-07-03T20:18:09Z) - Integrating Neural Networks and Dictionary Learning for Multidimensional Clinical Characterizations from Functional Connectomics Data [3.276067241408604]
本稿では、ニューラルネットワークと辞書学習を組み合わせた統合フレームワークを提案し、静止状態機能MRIと行動データの間の複雑な相互作用をモデル化する。
自閉症スペクトラム障害(ASD)52例を用いたマルチスコア予測課題における組み合わせモデルの評価を行った。
統合されたフレームワークは,3種類の臨床重症度を予測するために,10倍のクロス・コンフィグレーション・セッティングにおいて最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-07-03T20:14:45Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。