論文の概要: Alternating Direction Method of Multipliers for Quantization
- arxiv url: http://arxiv.org/abs/2009.03482v2
- Date: Mon, 1 Mar 2021 06:22:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 21:38:31.488505
- Title: Alternating Direction Method of Multipliers for Quantization
- Title(参考訳): 量子化のための乗算器の交互方向法
- Authors: Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra and
Meisam Razaviyayn
- Abstract要約: 量子化のための乗算器の交互方向法(texttADMM-Q$)アルゴリズムの性能について検討する。
不正確な更新ルールを処理できる$texttADMM-Q$のいくつかのバリエーションを開発しています。
提案手法の有効性を実証的に評価した。
- 参考スコア(独自算出の注目度): 15.62692130672419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization of the parameters of machine learning models, such as deep
neural networks, requires solving constrained optimization problems, where the
constraint set is formed by the Cartesian product of many simple discrete sets.
For such optimization problems, we study the performance of the Alternating
Direction Method of Multipliers for Quantization ($\texttt{ADMM-Q}$) algorithm,
which is a variant of the widely-used ADMM method applied to our discrete
optimization problem. We establish the convergence of the iterates of
$\texttt{ADMM-Q}$ to certain $\textit{stationary points}$. To the best of our
knowledge, this is the first analysis of an ADMM-type method for problems with
discrete variables/constraints. Based on our theoretical insights, we develop a
few variants of $\texttt{ADMM-Q}$ that can handle inexact update rules, and
have improved performance via the use of "soft projection" and "injecting
randomness to the algorithm". We empirically evaluate the efficacy of our
proposed approaches.
- Abstract(参考訳): ディープニューラルネットワークのような機械学習モデルのパラメータの量子化には、制約付き最適化問題(制約集合は、多くの単純な離散集合のデカルト積によって形成される)を解決する必要がある。
このような最適化問題に対して、離散最適化問題に適用された広く使われているADMM法の変種である量子化用乗算器の交互方向法($\texttt{ADMM-Q}$)アルゴリズムの性能について検討する。
我々は、$\texttt{ADMM-Q}$の反復の収束を、ある$\textit{stationary points}$に設定する。
我々の知る限りでは、これは離散変数/制約問題に対するADMM型手法の最初の解析である。
理論的知見に基づいて,不正確な更新ルールを処理できる$\texttt{ADMM-Q}$のいくつかの変種を開発し,"ソフトプロジェクション"と"ランダムネスをアルゴリズムに注入することで,性能を改善した。
提案手法の有効性を実証的に評価する。
関連論文リスト
- RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
そこで本研究では,多目的最適化問題を優先的精度で解くための対話型遺伝的アルゴリズムを提案する。
我々のアルゴリズムはRIGAと呼ばれ、集約関数がパラメータ内で線形であることから、任意の多目的最適化問題に適用できる。
いくつかのパフォーマンス指標(計算時間、最適性とクエリ数のギャップ)に対して、RIGAは最先端のアルゴリズムよりも優れた結果を得る。
論文 参考訳(メタデータ) (2023-11-10T13:56:15Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both
Worlds in Stochastic and Deterministic Environments [48.96971760679639]
マルコフ決定過程(MDP)の分散依存的後悔境界について検討する。
環境の微細な分散特性を特徴付けるための2つの新しい環境規範を提案する。
モデルに基づく手法では、MVPアルゴリズムの変種を設計する。
特に、この境界は極小かつ決定論的 MDP に対して同時に最適である。
論文 参考訳(メタデータ) (2023-01-31T06:54:06Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Parallel Surrogate-assisted Optimization Using Mesh Adaptive Direct
Search [0.0]
本稿では,メッシュ適応直接探索(MADS)アルゴリズムの探索段階における代理モデルと並列計算を利用する手法を提案する。
我々は、利用可能なCPUリソースに対して、修正MADSアルゴリズムの性能を評価するために数値実験を行う。
論文 参考訳(メタデータ) (2021-07-26T18:28:56Z) - Converting ADMM to a Proximal Gradient for Convex Optimization Problems [4.56877715768796]
融解ラッソや凸クラスタリングなどのスパース推定では、問題を解くために、近位勾配法またはマルチプライヤー(ADMM)の交互方向法のいずれかを適用します。
本論文では,制約と目的が強く凸であると仮定し,ADMM溶液を近位勾配法に変換する一般的な方法を提案する。
数値実験により, 効率の面で有意な改善が得られることを示した。
論文 参考訳(メタデータ) (2021-04-22T07:41:12Z) - Grouped Variable Selection with Discrete Optimization: Computational and
Statistical Perspectives [9.593208961737572]
本稿では,離散数理最適化に基づくグループ変数選択のための新しいアルゴリズムフレームワークを提案する。
本手法は,スパースプログラミングを用いた高次元線形回帰法と非加法モデリングの両方を網羅する。
提案手法は,関連する混合整数問題(mip)を解き,最適性が証明できるスタンドアロンの分岐・境界(bnb)フレームワークに基づいている。
論文 参考訳(メタデータ) (2021-04-14T19:21:59Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
人口ベースのブラックボックス一般化を推論するメタラーニングの利用を提案する。
メタロス関数は,学習アルゴリズムが検索動作を変更することを促進し,新たなコンテキストに容易に適合できることを示す。
論文 参考訳(メタデータ) (2021-03-05T08:13:25Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。