論文の概要: Online Planning in Uncertain and Dynamic Environment in the Presence of
Multiple Mobile Vehicles
- arxiv url: http://arxiv.org/abs/2009.03733v1
- Date: Tue, 8 Sep 2020 13:27:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 21:30:24.564856
- Title: Online Planning in Uncertain and Dynamic Environment in the Presence of
Multiple Mobile Vehicles
- Title(参考訳): 複数の移動体が存在する不確実・動的環境におけるオンライン計画
- Authors: Junhong Xu, Kai Yin, Lantao Liu
- Abstract要約: 環境条件が不確実な環境条件下での移動体ロボットの自律走行について検討する。
我々はまず,時間変動による乱れの影響を考慮し,他の車両の将来の状態分布を予測した。
次に,ロボットが到達する確率の高い状態を含む動的障害物対応リーチ可能空間を構築する。
- 参考スコア(独自算出の注目度): 5.894659354028797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the autonomous navigation of a mobile robot in the presence of
other moving vehicles under time-varying uncertain environmental disturbances.
We first predict the future state distributions of other vehicles to account
for their uncertain behaviors affected by the time-varying disturbances. We
then construct a dynamic-obstacle-aware reachable space that contains states
with high probabilities to be reached by the robot, within which the optimal
policy is searched. Since, in general, the dynamics of both the vehicle and the
environmental disturbances are nonlinear, we utilize a nonlinear Gaussian
filter -- the unscented transform -- to approximate the future state
distributions. Finally, the forward reachable space computation and backward
policy search are iterated until convergence. Extensive simulation evaluations
have revealed significant advantages of this proposed method in terms of
computation time, decision accuracy, and planning reliability.
- Abstract(参考訳): 移動ロボットの時間的不確定な環境変動下における移動ロボットの自律走行について検討する。
我々はまず,時間変動による乱れの影響を考慮し,他の車両の将来の状態分布を予測する。
次に,ロボットが到達する確率の高い状態を含む動的障害物を意識した到達可能空間を構築し,最適ポリシーを探索する。
一般論として、車両と環境障害のダイナミクスは非線形であるため、非線形ガウスフィルタ(unscented transform)を用いて将来の状態分布を近似する。
最後に、前方到達可能な空間計算と後方ポリシー探索を収束まで繰り返す。
広範なシミュレーション評価により,提案手法の計算時間,決定精度,計画信頼性の点で有意な利点が得られた。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - QuAD: Query-based Interpretable Neural Motion Planning for Autonomous Driving [33.609780917199394]
自動運転車は環境を理解して適切な行動を決定する必要がある。
従来のシステムは、シーン内のエージェントを見つけるためにオブジェクト検出に依存していた。
我々は、最初に占有する時間的自律性を知覚するカスケードモジュールから遠ざかる、統一的で解釈可能で効率的な自律フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-01T21:11:43Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Dynamics-Aware Spatiotemporal Occupancy Prediction in Urban Environments [37.00873004170998]
本稿では,ディープネットワークアーキテクチャを用いて2つの機能を統合するフレームワークを提案する。
本手法は実世界のOpenデータセット上で検証され,ベースライン法よりも高い予測精度を示す。
論文 参考訳(メタデータ) (2022-09-27T06:12:34Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Calibration of Human Driving Behavior and Preference Using Naturalistic
Traffic Data [5.926030548326619]
自然トラフィックデータからドライバの好みを推定するためにモデルをどのように反転させることができるかを示す。
我々のアプローチの際立った利点は、計算負担を大幅に削減することである。
論文 参考訳(メタデータ) (2021-05-05T01:20:03Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOutは、環境を共同で知覚し、センサーデータから様々な未来を予測するアプローチである。
本モデルでは,大規模自動運転データセットにおいて,より多様性があり,サンプル効率のよい動き予測を行う。
論文 参考訳(メタデータ) (2021-01-16T23:19:22Z) - Anticipatory Navigation in Crowds by Probabilistic Prediction of
Pedestrian Future Movements [33.37913533544612]
プロセス予測ナビゲーション(Process Precipatory Navigation, SPAN)は、非ホロノミックロボットが群衆のいる環境で移動できるようにするフレームワークである。
SPANは、歩行者の将来の動きをモデル化する継続的プロセスを予測する。
密集したシミュレーション環境でのSPANの能力を実世界の歩行者データセットで示す。
論文 参考訳(メタデータ) (2020-11-12T07:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。