論文の概要: Trajectory Based Podcast Recommendation
- arxiv url: http://arxiv.org/abs/2009.03859v1
- Date: Tue, 8 Sep 2020 16:49:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 20:45:05.552675
- Title: Trajectory Based Podcast Recommendation
- Title(参考訳): トラックベースポッドキャストのレコメンデーション
- Authors: Greg Benton, Ghazal Fazelnia, Alice Wang, Ben Carterette
- Abstract要約: ポッドキャストライブラリを次々に移動するユーザを見ることで、成功し、一貫したレコメンデーションを実現できることを示す。
提案手法により,協調フィルタリングベースライン上での効率が450%向上する。
- 参考スコア(独自算出の注目度): 6.366468661321732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Podcast recommendation is a growing area of research that presents new
challenges and opportunities. Individuals interact with podcasts in a way that
is distinct from most other media; and primary to our concerns is distinct from
music consumption. We show that successful and consistent recommendations can
be made by viewing users as moving through the podcast library sequentially.
Recommendations for future podcasts are then made using the trajectory taken
from their sequential behavior. Our experiments provide evidence that user
behavior is confined to local trends, and that listening patterns tend to be
found over short sequences of similar types of shows. Ultimately, our approach
gives a450%increase in effectiveness over a collaborative filtering baseline.
- Abstract(参考訳): Podcastのレコメンデーションは、新たな課題と機会を示す研究の領域が増えている。
個人は他のほとんどのメディアと異なる方法でポッドキャストと対話します。
ポッドキャストライブラリを順次移行したユーザを,成功して一貫したレコメンデーションが実現可能であることを示す。
将来のポッドキャストのレコメンデーションは、シーケンシャルな振る舞いから取られた軌道を使って行われる。
実験では,ユーザの行動が局所的な傾向に限定されていること,聴くパターンが類似したショーの短いシーケンスで見られる傾向があることの証拠を提供する。
最終的なアプローチは,協調フィルタリングベースラインよりもa450%効果的である。
関連論文リスト
- Enhancing Sequential Music Recommendation with Personalized Popularity Awareness [56.972624411205224]
本稿では、パーソナライズされた人気情報をシーケンシャルなレコメンデーションに組み込む新しいアプローチを提案する。
実験結果から、パーソナライズされた最もポピュラーなレコメンデータは、既存の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-06T15:05:12Z) - Measuring Strategization in Recommendation: Users Adapt Their Behavior to Shape Future Content [66.71102704873185]
実験と調査を行うことで,ユーザストラテジゼーションの試行を行う。
参加者の居住時間や「いいね!」の使用など,結果指標間での戦略化の強い証拠を見出す。
この結果から,プラットフォームはアルゴリズムがユーザの行動に与える影響を無視できないことが示唆された。
論文 参考訳(メタデータ) (2024-05-09T07:36:08Z) - Fairness Through Domain Awareness: Mitigating Popularity Bias For Music
Discovery [56.77435520571752]
音楽発見と人気バイアスの本質的な関係について検討する。
本稿では,グラフニューラルネットワーク(GNN)に基づくレコメンデータシステムにおいて,人気バイアスに対処する,ドメイン対応の個別フェアネスに基づくアプローチを提案する。
我々のアプローチでは、個々の公正さを用いて、真実を聴く経験、すなわち2つの歌が似ているとすると、この類似性は彼らの表現に反映されるべきである。
論文 参考訳(メタデータ) (2023-08-28T14:12:25Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
本稿では,対話における対話コミュニケーションをモデル化するための枠組みを提案する。
我々は、対応するリスナー動作の複数の可能性を自動回帰的に出力する。
本手法は,非言語的ダイアド相互作用の多モーダルおよび非決定論的性質を有機的に捕捉する。
論文 参考訳(メタデータ) (2022-04-18T17:58:04Z) - Topic Modeling on Podcast Short-Text Metadata [0.9539495585692009]
短いテキストのモデリング技術を用いて,ポッドキャストのメタデータやタイトル,記述から関連トピックを発見できる可能性を評価する。
非負行列因子化モデリングフレームワークにおいて、しばしばポッドキャストメタデータに現れる名前付きエンティティ(NE)に対する新しい戦略を提案する。
SpotifyとiTunesとDeezerの既存の2つのデータセットに対する実験により、提案したドキュメント表現であるNEiCEがベースラインの一貫性を改善していることが示された。
論文 参考訳(メタデータ) (2022-01-12T11:07:05Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
暗黙のフィードバックから学ぶことは、推奨システムの適用において最も一般的なケースの1つである。
本稿では,暗黙のフィードバックに対する確率的・変動的推薦を提案する。
提案したDPIとDVAEを4つの最先端レコメンデーションモデルに適用し、3つのデータセットで実験を行う。
論文 参考訳(メタデータ) (2021-05-20T08:59:44Z) - A Two-Phase Approach for Abstractive Podcast Summarization [18.35061145103997]
ポッドキャストの要約は他のデータフォーマットの要約とは異なる。
文選択とSeq2seq学習という2段階の手法を提案する。
提案手法は,ROUGEに基づく測定と人的評価の両面で有望な結果をもたらす。
論文 参考訳(メタデータ) (2020-11-16T21:31:28Z) - PodSumm -- Podcast Audio Summarization [0.0]
テキストドメインからのガイダンスを用いて,ポッドキャストの要約を自動的に作成する手法を提案する。
このタスクにはデータセットが不足しているため、内部データセットをキュレートし、データ拡張の効果的なスキームを見つけ、アノテータから要約を集めるためのプロトコルを設計する。
本手法は, ROUGE-F(1/2/L) スコア0.63/0.53/0.63をデータセット上で達成する。
論文 参考訳(メタデータ) (2020-09-22T04:49:33Z) - A Baseline Analysis for Podcast Abstractive Summarization [18.35061145103997]
本稿では,Spotify Podcastデータセットを用いたポッドキャスト要約のベースライン解析について述べる。
研究者が現在の最先端の事前訓練モデルを理解するのを助け、より良いモデルを作るための基盤を構築することを目的としている。
論文 参考訳(メタデータ) (2020-08-24T18:38:42Z) - Recommending Podcasts for Cold-Start Users Based on Music Listening and
Taste [5.429958676933934]
ポッドキャスティングは急速に普及する新興メディアだと考えている。
音楽消費行動を用いて、Spotifyユーザーの好みを200万以上のポッドキャストで推定する2つの主要な手法について検討した。
その結果,オフラインおよびオンライン両方の実験において,最大50%の消費改善が見られた。
論文 参考訳(メタデータ) (2020-07-27T02:55:23Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
我々はレコメンデータシステムを逐次レコメンデーション問題として定式化する。
我々は,ComiRec と呼ばれる連続的なレコメンデーションのための新しい制御可能な多目的フレームワークを提案する。
私たちのフレームワークは、オフラインのAlibaba分散クラウドプラットフォームにうまくデプロイされています。
論文 参考訳(メタデータ) (2020-05-19T10:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。