論文の概要: Intraoperative Liver Surface Completion with Graph Convolutional VAE
- arxiv url: http://arxiv.org/abs/2009.03871v2
- Date: Mon, 12 Jul 2021 18:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 20:55:44.591031
- Title: Intraoperative Liver Surface Completion with Graph Convolutional VAE
- Title(参考訳): Graph Convolutional VAEを用いた術中肝表面コンパートメント
- Authors: Simone Foti, Bongjin Koo, Thomas Dowrick, Joao Ramalhinho, Moustafa
Allam, Brian Davidson, Danail Stoyanov and Matthew J. Clarkson
- Abstract要約: 我々は、データセットの限られたサイズを補うために、周波数領域の形状をランダムに摂動する新しいデータ拡張手法を導入する。
本手法のコアは変分オートエンコーダ (VAE) で, 肝臓の完全な形状を学習するための潜伏空間を訓練する。
この最適化の効果は、初期生成した形状の進行非剛性変形である。
- 参考スコア(独自算出の注目度): 10.515163959186964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we propose a method based on geometric deep learning to predict
the complete surface of the liver, given a partial point cloud of the organ
obtained during the surgical laparoscopic procedure. We introduce a new data
augmentation technique that randomly perturbs shapes in their frequency domain
to compensate the limited size of our dataset. The core of our method is a
variational autoencoder (VAE) that is trained to learn a latent space for
complete shapes of the liver. At inference time, the generative part of the
model is embedded in an optimisation procedure where the latent representation
is iteratively updated to generate a model that matches the intraoperative
partial point cloud. The effect of this optimisation is a progressive non-rigid
deformation of the initially generated shape. Our method is qualitatively
evaluated on real data and quantitatively evaluated on synthetic data. We
compared with a state-of-the-art rigid registration algorithm, that our method
outperformed in visible areas.
- Abstract(参考訳): 本研究は, 外科的腹腔鏡下手術で得られた臓器の部分点雲を考慮し, 肝の完全面を予測するための幾何学的深層学習に基づく手法を提案する。
本稿では,周波数領域内の形状をランダムに摂動させ,データセットのサイズを補償する新しいデータ拡張手法を提案する。
本手法のコアは変分オートエンコーダ (VAE) で, 肝臓の完全な形状を学習するための潜伏空間を訓練する。
推論時には、潜在表現を反復的に更新する最適化手順にモデルの生成部を埋め込んで、術中部分点雲に一致するモデルを生成する。
この最適化の効果は、初期生成した形状の進行非剛性変形である。
本手法は実データから定性的に評価し,合成データから定量的に評価する。
本手法は,最先端の剛性登録アルゴリズムと比較し,可視領域で比較した。
関連論文リスト
- Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction [0.6249768559720122]
画像ガイド下肝手術において, 3D-3D非剛性登録法は, 点雲として表される術前モデルと術中表面のマッピングを推定する上で重要な役割を担っている。
本稿では,新しい3D-3D非剛性登録法を提案する。
従来の手法とは対照的に,本手法は表面マッチング項自体にFEMを独自に組み込む。
論文 参考訳(メタデータ) (2024-03-15T02:05:20Z) - Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane [58.871015937204255]
変形性組織を再建するための高速直交平面(Fast Orthogonal Plane)を導入する。
我々は外科手術を4Dボリュームとして概念化し、それらをニューラルネットワークからなる静的および動的フィールドに分解する。
この分解により4次元空間が増加し、メモリ使用量が減少し、最適化が高速化される。
論文 参考訳(メタデータ) (2023-12-23T13:27:50Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - InsMix: Towards Realistic Generative Data Augmentation for Nuclei
Instance Segmentation [29.78647170035808]
本稿では,コピック・ペースト・スムース原理に従って,核セグメンテーションのための現実的なデータ拡張手法InsMixを提案する。
具体的には、拡張画像が原子核に関する豪華な情報を取得することができる形態的制約を提案する。
背景の画素冗長性をフル活用するために,背景パッチをランダムにシャッフルする背景摂動法を提案する。
論文 参考訳(メタデータ) (2022-06-30T08:58:05Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
本稿では,合成データのみを用いて学習した深部畳み込みニューラルネットワークに基づく人体部分分割のための新しい枠組みを提案する。
提案手法は,人体部品の実際の注釈付きデータを用いてモデルを訓練することなく,最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-02-02T12:26:50Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Segmentation of Surgical Instruments for Minimally-Invasive
Robot-Assisted Procedures Using Generative Deep Neural Networks [17.571763112459166]
本研究は,極小侵襲手術器具のセマンティックセグメンテーションをトレーニングデータを用いて改善できることを証明した。
これを実現するために、ソースデータセットを変換してターゲットデータセットのドメイン分布を近似するCycleGANモデルを使用する。
完全ラベルを持つこの新たに生成されたデータは、セマンティックセグメンテーションニューラルネットワークであるU-Netのトレーニングに使用される。
論文 参考訳(メタデータ) (2020-06-05T14:39:41Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。