論文の概要: Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction
- arxiv url: http://arxiv.org/abs/2403.09964v2
- Date: Mon, 9 Sep 2024 10:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 03:12:39.446330
- Title: Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction
- Title(参考訳): 肝内変形矯正における境界拘束のない生体力学的モデルに基づく表面マッチング
- Authors: Zixin Yang, Richard Simon, Kelly Merrell, Cristian. A. Linte,
- Abstract要約: 画像ガイド下肝手術において, 3D-3D非剛性登録法は, 点雲として表される術前モデルと術中表面のマッピングを推定する上で重要な役割を担っている。
本稿では,新しい3D-3D非剛性登録法を提案する。
従来の手法とは対照的に,本手法は表面マッチング項自体にFEMを独自に組み込む。
- 参考スコア(独自算出の注目度): 0.6249768559720122
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In image-guided liver surgery, 3D-3D non-rigid registration methods play a crucial role in estimating the mapping between the preoperative model and the intraoperative surface represented as point clouds, addressing the challenge of tissue deformation. Typically, these methods incorporate a biomechanical model, represented as a finite element model (FEM), used to regularize a surface matching term. This paper introduces a novel 3D-3D non-rigid registration method. In contrast to the preceding techniques, our method uniquely incorporates the FEM within the surface matching term itself, ensuring that the estimated deformation maintains geometric consistency throughout the registration process. Additionally, we eliminate the need to determine zero-boundary conditions and applied force locations in the FEM. We achieve this by integrating soft springs into the stiffness matrix and allowing forces to be distributed across the entire liver surface. To further improve robustness, we introduce a regularization technique focused on the gradient of the force magnitudes. This regularization imposes spatial smoothness and helps prevent the overfitting of irregular noise in intraoperative data. Optimization is achieved through an accelerated proximal gradient algorithm, further enhanced by our proposed method for determining the optimal step size. Our method is evaluated and compared to both a learning-based method and a traditional method that features FEM regularization using data collected on our custom-developed phantom, as well as two publicly available datasets. Our method consistently outperforms or is comparable to the baseline techniques. Both the code and dataset will be made publicly available.
- Abstract(参考訳): 画像ガイド下肝手術において, 3D-3D非剛性登録法は, 術前モデルと術中表面を点群としてマッピングし, 組織変形の課題に対処する上で重要な役割を担っている。
通常、これらの手法は有限要素モデル(FEM)として表される生体力学モデルを含み、表面整合項を正規化するために用いられる。
本稿では,新しい3D-3D非剛性登録法を提案する。
従来の手法とは対照的に,本手法は表面整合項自体にFEMを独自に組み込んで,推定変形が登録過程を通して幾何的整合性を維持することを保証している。
さらに、FEMにおけるゼロ境界条件と印加力位置を決定する必要がなくなる。
柔らかいばねを剛性マトリックスに統合し,肝臓表面全体に力を分散させることで,その実現を図っている。
強靭性をさらに向上するため, 力量勾配に着目した正則化手法を導入する。
この正規化は空間的滑らかさを課し、術中データにおける不規則ノイズの過度な適合を防ぐのに役立つ。
最適化は高速化された近位勾配アルゴリズムにより達成され、提案手法によりさらに拡張され、最適ステップサイズが決定される。
本手法は,これまでに開発したファントムから収集したデータと2つの公開データセットを用いて,FEM正則化を特徴とする学習ベース手法と従来手法の両方と比較して評価・比較を行った。
我々の手法は一貫して性能を上回り、ベースライン技術に匹敵する。
コードとデータセットの両方が公開されている。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
医用画像からの心臓解剖のメッシュ再構築は, 形状, 運動計測, 生体物理シミュレーションに有用である。
従来のボクセルベースのアプローチは、イメージの忠実さを損なう前処理と後処理に依存している。
そこで本稿では,メッシュのスライスからメッシュへの勾配バックプロパゲーションを可能にする,新しい識別可能なボキセル化とスライシング(DVS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T17:19:31Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - Unsupervised diffeomorphic cardiac image registration using
parameterization of the deformation field [6.343400988017304]
本研究では,移動メッシュパラメータ化に基づくエンドツーエンドの非教師付き微分同相変形型登録フレームワークを提案する。
提案手法の有効性を,2次元および3次元心臓MRIスキャンを含む3つの異なるデータセット上で評価することにより検討した。
論文 参考訳(メタデータ) (2022-08-28T19:34:10Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
未知視トモグラフィ(UVT)は、未知のランダムな向きで2次元投影から3次元密度マップを再構成する。
提案したOMRはより堅牢で、従来の最先端のOMRアプローチよりも大幅に性能が向上している。
論文 参考訳(メタデータ) (2022-07-06T21:40:59Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Intraoperative Liver Surface Completion with Graph Convolutional VAE [10.515163959186964]
我々は、データセットの限られたサイズを補うために、周波数領域の形状をランダムに摂動する新しいデータ拡張手法を導入する。
本手法のコアは変分オートエンコーダ (VAE) で, 肝臓の完全な形状を学習するための潜伏空間を訓練する。
この最適化の効果は、初期生成した形状の進行非剛性変形である。
論文 参考訳(メタデータ) (2020-09-08T17:19:31Z) - A Coupled Manifold Optimization Framework to Jointly Model the
Functional Connectomics and Behavioral Data Spaces [5.382679710017696]
本稿では,コホートに共通する低次元行列多様体にfMRIデータを投影する結合多様体最適化フレームワークを提案する。
患者固有の負荷は、同時に第2の非線形多様体を介して、興味の行動尺度にマップされる。
自閉症スペクトラム障害58例の安静時fMRIの枠組みを検証した。
論文 参考訳(メタデータ) (2020-07-03T20:12:51Z) - A fast and memory-efficient algorithm for smooth interpolation of
polyrigid transformations: application to human joint tracking [0.0]
運動中の関節の円滑な変形に対する行列対角化に基づくアルゴリズムを提案する。
固有分解法は、精度、計算時間、メモリ要求間のトレードオフのバランスをとることができる。
論文 参考訳(メタデータ) (2020-04-28T14:30:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。