論文の概要: Revealing Lung Affections from CTs. A Comparative Analysis of Various
Deep Learning Approaches for Dealing with Volumetric Data
- arxiv url: http://arxiv.org/abs/2009.04160v1
- Date: Wed, 9 Sep 2020 08:34:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 09:13:30.618795
- Title: Revealing Lung Affections from CTs. A Comparative Analysis of Various
Deep Learning Approaches for Dealing with Volumetric Data
- Title(参考訳): CTによる肺病変の検索
ボリュームデータを用いたディーリングにおける各種深層学習手法の比較分析
- Authors: Radu Miron, Cosmin Moisii, Mihaela Breaban
- Abstract要約: 本稿では,肺CTにおける結核関連病変を自動的に検出するための深層学習手法を提示し,比較検討した。
報告された研究は、競争で最高の結果を得たSenticLab.UAICチームに属する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents and comparatively analyses several deep learning
approaches to automatically detect tuberculosis related lesions in lung CTs, in
the context of the ImageClef 2020 Tuberculosis task. Three classes of methods,
different with respect to the way the volumetric data is given as input to
neural network-based classifiers are discussed and evaluated. All these come
with a rich experimental analysis comprising a variety of neural network
architectures, various segmentation algorithms and data augmentation schemes.
The reported work belongs to the SenticLab.UAIC team, which obtained the best
results in the competition.
- Abstract(参考訳): 肺CTにおける結核関連病変を自動的に検出するための深層学習手法を,ImageClef 2020 結核タスクの文脈で提示し,比較検討した。
ニューラルネットワークに基づく分類器への入力としてボリュームデータが与えられる方法が異なる3つの手法のクラスを議論し、評価した。
これらすべてには、さまざまなニューラルネットワークアーキテクチャ、さまざまなセグメンテーションアルゴリズム、データ拡張スキームを含む、豊富な実験的分析が含まれている。
報告された研究は、競争で最高の結果を得たSenticLab.UAICチームに属する。
関連論文リスト
- Bridging the Diagnostic Divide: Classical Computer Vision and Advanced AI methods for distinguishing ITB and CD through CTE Scans [2.900410045439515]
放射線医の間では, 内皮-皮下脂肪比は, ITBとCDの鑑別における代用バイオマーカーとして認識されている。
本稿では,この比率計算を自動化するために,皮下脂肪の自動分離のための新しい2次元画像コンピュータビジョンアルゴリズムを提案する。
ITB, CD, 正常患者のサンプルを用いて, CTEスキャンのデータセットを用いてResNet10モデルを訓練し, 75%の精度を得た。
論文 参考訳(メタデータ) (2024-10-23T17:05:27Z) - A Sentiment Analysis of Medical Text Based on Deep Learning [1.8130068086063336]
本稿では,変換器(BERT)の双方向エンコーダ表現を基礎的事前学習モデルとして用いた医療領域に焦点を当てた。
METS-CoVデータセットを用いて実験と解析を行い、異なるディープラーニングネットワークの統合後のトレーニング性能について検討した。
CNNモデルは、BERTのような事前訓練されたモデルと組み合わせて、小さな医療用テキストデータセットでトレーニングされた場合、他のネットワークよりも優れています。
論文 参考訳(メタデータ) (2024-04-16T12:20:49Z) - Comparing Adversarial and Supervised Learning for Organs at Risk
Segmentation in CT images [0.0]
放射線治療ワークフローの重要な構成要素は、CTスキャンからのOrgan at Risk (OAR)セグメンテーションである。
本稿では,GAN(Generative Adversarial Networks)の性能について,CT画像からOARをセグメント化するための教師付き学習手法と比較して検討する。
結果は非常に有望であり、提案されたGANベースのアプローチがCNNベースのアプローチと似ているか、あるいは優れていることを示している。
論文 参考訳(メタデータ) (2023-03-31T10:10:05Z) - A Deep Neural Architecture for Harmonizing 3-D Input Data Analysis and
Decision Making in Medical Imaging [3.6170587429082195]
本稿では、ルーティングと機能アライメントステップを含むRACNetという新しいディープニューラルネットワークを提案する。
3次元画像入力の異なる入力長と単一のアノテーションを効果的に処理し、高精度な決定を提供する。
さらに、トレーニングされたRACNetから潜時変数を抽出することで、ネットワークの決定に関するさらなる洞察を提供するアンカーのセットが生成される。
論文 参考訳(メタデータ) (2023-03-01T02:07:48Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
胸部CTスキャンの小さなデータセットを用いて,大規模な3次元合成CTスキャンボリュームを生成するCT-SGANモデルを提案する。
その結果,CT-SGANは大量の合成データに基づいて結節を事前訓練することにより,肺検出精度を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-10-14T22:20:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。