論文の概要: DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control
- arxiv url: http://arxiv.org/abs/2009.04278v1
- Date: Wed, 9 Sep 2020 12:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 09:15:16.930926
- Title: DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control
- Title(参考訳): DyNODE:連続制御におけるダイナミクスモデリングのためのニューラル正規微分方程式
- Authors: Victor M. Martinez Alvarez and Rare\c{s} Ro\c{s}ca and Cristian G.
F\u{a}lcu\c{t}escu
- Abstract要約: 本稿では,ニューラル常微分方程式の枠組みに制御を組み込むことにより,システムの基盤となる力学を捉える新しい手法を提案する。
以上の結果から,アクター批判強化学習アルゴリズムと組み合わせた単純なDyNODEアーキテクチャが,標準ニューラルネットワークより優れていることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach (DyNODE) that captures the underlying dynamics of
a system by incorporating control in a neural ordinary differential equation
framework. We conduct a systematic evaluation and comparison of our method and
standard neural network architectures for dynamics modeling. Our results
indicate that a simple DyNODE architecture when combined with an actor-critic
reinforcement learning (RL) algorithm that uses model predictions to improve
the critic's target values, outperforms canonical neural networks, both in
sample efficiency and predictive performance across a diverse range of
continuous tasks that are frequently used to benchmark RL algorithms. This
approach provides a new avenue for the development of models that are more
suited to learn the evolution of dynamical systems, particularly useful in the
context of model-based reinforcement learning. To assist related work, we have
made code available at https://github.com/vmartinezalvarez/DyNODE .
- Abstract(参考訳): 本稿では,ニューラル常微分方程式の枠組みに制御を組み込むことにより,システムの基盤となるダイナミクスを捉える新しいアプローチ(dynode)を提案する。
我々は動的モデリングのための手法と標準ニューラルネットワークアーキテクチャの体系的評価と比較を行う。
結果は,モデル予測を用いて批判者の目標値を改善する,アクター-批判的強化学習(rl)アルゴリズムと組み合わせた単純なdynodeアーキテクチャが,rlアルゴリズムのベンチマークに頻繁に使用されるさまざまな連続タスクにおいて,サンプル効率と予測性能の両方において,正準ニューラルネットワークよりも優れていることを示している。
このアプローチは、特にモデルに基づく強化学習の文脈で有用である、動的システムの進化を学ぶのにより適したモデルの開発のための新しい道を提供する。
関連作業を支援するため、https://github.com/vmartinezalvarez/DyNODE でコードを公開しました。
関連論文リスト
- Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs [12.204795159651589]
本稿では,Ptemporals が支配する動的システムの低次モデリングと制御のための深層自己コーディング学習手法について検討する。
まず,線形オートエン縮退モデルの学習目標を定式化し,制御アルゴリズムを用いて動的モード分解により得られる結果によく似た解が得られることを示す。
次に、この線形自動符号化アーキテクチャをディープ・オートコーディング・フレームワークに拡張し、非線形低次モデルの開発を可能にする。
論文 参考訳(メタデータ) (2024-09-09T22:56:40Z) - Model-based Policy Optimization using Symbolic World Model [46.42871544295734]
ロボット工学における学習に基づく制御手法の適用は、大きな課題を呈している。
1つは、モデルなし強化学習アルゴリズムがサンプル効率の低い観測データを使用することである。
シンボリック回帰によって生成されるシンボリック表現による遷移ダイナミクスの近似を提案する。
論文 参考訳(メタデータ) (2024-07-18T13:49:21Z) - KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics [0.0]
コルモゴロフ・アルノルドネットワーク(KAN)は多層パーセプトロン(MLP)の代替品である
この研究は、Kansをニューラル常微分方程式(ODE)フレームワークのバックボーンとして適用する。
論文 参考訳(メタデータ) (2024-07-05T00:38:49Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODEは、NODEで動的システムのモデリングを行うための、最初の半教師付きアプローチである。
複数の動的システムモデリングタスクにおいて,ベースラインのNeural ODEモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-19T19:17:12Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。