論文の概要: Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs
- arxiv url: http://arxiv.org/abs/2409.06101v1
- Date: Mon, 9 Sep 2024 22:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 17:44:43.286852
- Title: Bridging Autoencoders and Dynamic Mode Decomposition for Reduced-order Modeling and Control of PDEs
- Title(参考訳): ブリジングオートエンコーダと動的モード分解によるPDEの低次モデリングと制御
- Authors: Priyabrata Saha, Saibal Mukhopadhyay,
- Abstract要約: 本稿では,Ptemporals が支配する動的システムの低次モデリングと制御のための深層自己コーディング学習手法について検討する。
まず,線形オートエン縮退モデルの学習目標を定式化し,制御アルゴリズムを用いて動的モード分解により得られる結果によく似た解が得られることを示す。
次に、この線形自動符号化アーキテクチャをディープ・オートコーディング・フレームワークに拡張し、非線形低次モデルの開発を可能にする。
- 参考スコア(独自算出の注目度): 12.204795159651589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling and controlling complex spatiotemporal dynamical systems driven by partial differential equations (PDEs) often necessitate dimensionality reduction techniques to construct lower-order models for computational efficiency. This paper explores a deep autoencoding learning method for reduced-order modeling and control of dynamical systems governed by spatiotemporal PDEs. We first analytically show that an optimization objective for learning a linear autoencoding reduced-order model can be formulated to yield a solution closely resembling the result obtained through the dynamic mode decomposition with control algorithm. We then extend this linear autoencoding architecture to a deep autoencoding framework, enabling the development of a nonlinear reduced-order model. Furthermore, we leverage the learned reduced-order model to design controllers using stability-constrained deep neural networks. Numerical experiments are presented to validate the efficacy of our approach in both modeling and control using the example of a reaction-diffusion system.
- Abstract(参考訳): 偏微分方程式(PDE)によって駆動される複雑な時空間力学系のモデル化と制御は、計算効率の低次モデルを構築するためにしばしば次元削減技術を必要とする。
本稿では、時空間PDEによって制御される動的システムの低次モデリングと制御のための深層自動符号化学習法について検討する。
まず、線形自己エンコード縮小次数モデルを学ぶための最適化目的を定式化して、制御アルゴリズムを用いた動的モード分解により得られる結果とよく似た解が得られることを示す。
次に、この線形オートエンコーディングアーキテクチャをディープオートエンコーディングフレームワークに拡張し、非線形低次モデルの開発を可能にする。
さらに、学習した低次モデルを利用して、安定性に制約のあるディープニューラルネットワークを用いたコントローラを設計する。
反応拡散システムの例を用いて, モデリングと制御の両面でのアプローチの有効性を検証するために, 数値解析実験を行った。
関連論文リスト
- Real-time optimal control of high-dimensional parametrized systems by deep learning-based reduced order models [3.5161229331588095]
複数のシナリオにおけるパラメタライズされたPDEの観点で記述されたシステムの迅速な制御のための,非侵襲的なディープラーニングベースリダクションオーダーモデリング(DL-ROM)手法を提案する。
i)データ生成、(ii)次元削減、および(iii)オフラインフェーズでのニューラルネットワークトレーニングの後、任意のシナリオにおいて、最適制御戦略をオンラインフェーズで迅速に検索することができる。
論文 参考訳(メタデータ) (2024-09-09T15:20:24Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
Systems using Constrained Autoencoders [0.0]
制約付き自己エンコーダニューラルネットワークによって記述された非線形射影のクラスを導入し,データから多様体と射影繊維の両方を学習する。
我々のアーキテクチャでは、エンコーダがデコーダの左逆であることを保証するために、可逆的アクティベーション関数と生物直交重み行列を用いる。
また,高速なダイナミックスと非正規性を考慮した斜め射影ファイバの学習を促進するために,新しいダイナミックス対応コスト関数を導入する。
論文 参考訳(メタデータ) (2023-07-28T04:01:48Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Nonlinear proper orthogonal decomposition for convection-dominated flows [0.0]
そこで本稿では,自動エンコーダと長期記憶ネットワークを組み合わせたエンドツーエンドのガレルキンフリーモデルを提案する。
我々の手法は精度を向上するだけでなく、トレーニングやテストの計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2021-10-15T18:05:34Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
本稿では,ニューラルネットワークの圧縮と高速化に数学的モデルオーダー削減法が利用できることを示す。
我々は,ニューラルネットワークの層として必要な部分空間投影と操作を統合するニューラルODEを開発することで,新しい圧縮手法を実装した。
論文 参考訳(メタデータ) (2021-05-28T19:27:09Z) - DyNODE: Neural Ordinary Differential Equations for Dynamics Modeling in
Continuous Control [0.0]
本稿では,ニューラル常微分方程式の枠組みに制御を組み込むことにより,システムの基盤となる力学を捉える新しい手法を提案する。
以上の結果から,アクター批判強化学習アルゴリズムと組み合わせた単純なDyNODEアーキテクチャが,標準ニューラルネットワークより優れていることが示唆された。
論文 参考訳(メタデータ) (2020-09-09T12:56:58Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。