Experimental Authentication of Quantum Key Distribution with
Post-quantum Cryptography
- URL: http://arxiv.org/abs/2009.04662v1
- Date: Thu, 10 Sep 2020 04:12:07 GMT
- Title: Experimental Authentication of Quantum Key Distribution with
Post-quantum Cryptography
- Authors: Wang Liu-Jun, Zhang Kai-Yi, Wang Jia-Yong, Cheng Jie, Yang Yong-Hua,
Tang Shi-Biao, Yan Di, Tang Yan-Lin, Liu Zhen, Yu Yu, Zhang Qiang, Pan
Jian-Wei
- Abstract summary: We experimentally verified the feasibility, efficiency and stability of the PQC algorithm in QKD authentication.
Using PQC authentication we only need to believe the CA is safe, rather than all trusted relays.
- Score: 3.627592297350721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) can provide information theoretically secure
key exchange even in the era of quantum computer. However, QKD requires the
classical channel to be authenticated, and the current method is pre-sharing
symmetric keys. For a QKD network of $n$ users, this method requires $C_n^2 =
n(n-1)/2$ pairs of symmetric keys to realize pairwise interconnection. In
contrast, with the help of mature public key infrastructure (PKI) and
post-quantum cryptography (PQC) with quantum resistant security, each user only
needs to apply for a digital certificate from certificate authority (CA) to
achieve efficient and secure authentication for QKD. We only need to assume the
short-term security of the PQC algorithm to achieve the long-term security of
the distributed keys. Here, we experimentally verified the feasibility,
efficiency and stability of the PQC algorithm in QKD authentication, and
demonstrated the advantages when new users join the QKD network. Using PQC
authentication we only need to believe the CA is safe, rather than all trusted
relays. QKD combined with PQC authentication will greatly promote and extend
the application prospects of quantum safe communication.
Related papers
- High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality [105.73011353120471]
Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security.
Due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools is challenging.
This paper introduces a QKD communication system design tool.
arXiv Detail & Related papers (2025-01-21T11:03:59Z) - Secure Composition of Quantum Key Distribution and Symmetric Key Encryption [3.6678562499684517]
Quantum key distribution (QKD) allows Alice and Bob to share a secret key over an insecure channel with proven information-theoretic security against an adversary whose strategy is bounded only by the laws of physics.
We consider the problem of using the QKD established key with a secure symmetric key-based encryption algorithm and use an approach based on hybrid encryption to provide a proof of security for the composition.
arXiv Detail & Related papers (2025-01-14T20:58:02Z) - Secure Multi-Party Biometric Verification using QKD assisted Quantum Oblivious Transfer [34.46964288961048]
We present a practical implementation of a secure multiparty computation application enabled by quantum oblivious transfer (QOT)
The QOT protocol uses polarization-encoded entangled states to share oblivious keys between two parties with quantum key distribution (QKD) providing authentication.
A practical use case is demonstrated for privacy-preserving fingerprint matching against no-fly lists from Interpol and the United Nations.
arXiv Detail & Related papers (2025-01-09T15:51:30Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Authentication of quantum key distribution with post-quantum
cryptography and replay attacks [1.8476815769956565]
Quantum key distribution (QKD) and post-quantum cryptography (PQC) are two cryptographic mechanisms with quantum-resistant security.
We propose two protocols based on PQC to realize the full authentication of QKD data post-processing.
arXiv Detail & Related papers (2022-06-02T17:29:34Z) - Authentication of Metropolitan Quantum Key Distribution Network with
Post-quantum Cryptography [13.937739507933578]
The Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes.
The feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching were verified.
arXiv Detail & Related papers (2021-06-04T12:15:57Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.