論文の概要: Towards Interpretable Multi-Task Learning Using Bilevel Programming
- arxiv url: http://arxiv.org/abs/2009.05483v1
- Date: Fri, 11 Sep 2020 15:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 20:57:26.894258
- Title: Towards Interpretable Multi-Task Learning Using Bilevel Programming
- Title(参考訳): バイレベルプログラミングによるマルチタスク学習の解釈に向けて
- Authors: Francesco Alesiani, Shujian Yu, Ammar Shaker and Wenzhe Yin
- Abstract要約: 解釈可能なマルチタスク学習は、学習したモデルの予測性能に基づいて、タスク関係のスパースグラフを学習するものとして表現することができる。
一般化性能を犠牲にすることなく、学習したモデルの解釈性や、合成データと実データとの関係を実証的に改善する方法を示す。
- 参考スコア(独自算出の注目度): 18.293397644865454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretable Multi-Task Learning can be expressed as learning a sparse graph
of the task relationship based on the prediction performance of the learned
models. Since many natural phenomenon exhibit sparse structures, enforcing
sparsity on learned models reveals the underlying task relationship. Moreover,
different sparsification degrees from a fully connected graph uncover various
types of structures, like cliques, trees, lines, clusters or fully disconnected
graphs. In this paper, we propose a bilevel formulation of multi-task learning
that induces sparse graphs, thus, revealing the underlying task relationships,
and an efficient method for its computation. We show empirically how the
induced sparse graph improves the interpretability of the learned models and
their relationship on synthetic and real data, without sacrificing
generalization performance. Code at https://bit.ly/GraphGuidedMTL
- Abstract(参考訳): 解釈可能なマルチタスク学習は、学習モデルの予測性能に基づいてタスク関係のスパースグラフを学習することとして表現することができる。
多くの自然現象はスパース構造を示すため、学習モデルのスパース性が基礎となるタスクの関係を明らかにする。
さらに、完全連結グラフからの異なるスパーシフィケーション度は、クランク、木、線、クラスタ、あるいは完全連結グラフのような様々な種類の構造を明らかにする。
本稿では,スパースグラフを誘導するマルチタスク学習の2レベル定式化を提案し,その基礎となるタスク関係を明らかにするとともに,その計算の効率的な方法を提案する。
一般化性能を犠牲にすることなく, 誘導スパースグラフが学習モデルの解釈性と合成データと実データとの関係をいかに改善するかを実証的に示す。
コード: https://bit.ly/graphguidedmtl
関連論文リスト
- State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
エンドツーエンドで説明グラフを生成する事前学習言語モデルについて検討する。
本稿では,ノードとエッジの編集操作によるグラフ摂動の簡易かつ効果的な方法を提案する。
提案手法は,説明グラフの構造的精度と意味的精度を両立させる。
論文 参考訳(メタデータ) (2022-04-11T00:58:27Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Learning an Interpretable Graph Structure in Multi-Task Learning [18.293397644865454]
本稿では,タスク間のマルチタスク学習と本質的な関係を解釈可能かつスパースなグラフで推定する新しい手法を提案する。
このグラフは各タスクのモデルパラメータと同時に学習するため、特定の予測問題におけるタスク間の臨界関係を反映する。
論文 参考訳(メタデータ) (2020-09-11T18:58:14Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
グラフ隣接行列の後方分布を構築するための新しい非パラメトリックグラフモデルを提案する。
このモデルの利点を,ノード分類,リンク予測,レコメンデーションという3つの異なる問題設定で示す。
論文 参考訳(メタデータ) (2020-06-23T21:10:55Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Learning Product Graphs Underlying Smooth Graph Signals [15.023662220197242]
本稿では,製品グラフの形式で与えられるデータから構造化グラフを学習する方法を考案する。
この目的のために、まずグラフ学習問題は線形プログラムとして表され、これは(平均的に)最先端のグラフ学習アルゴリズムより優れている。
論文 参考訳(メタデータ) (2020-02-26T03:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。