論文の概要: Learning an Interpretable Graph Structure in Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2009.05618v1
- Date: Fri, 11 Sep 2020 18:58:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 21:07:49.270522
- Title: Learning an Interpretable Graph Structure in Multi-Task Learning
- Title(参考訳): マルチタスク学習における解釈可能なグラフ構造学習
- Authors: Shujian Yu, Francesco Alesiani, Ammar Shaker, Wenzhe Yin
- Abstract要約: 本稿では,タスク間のマルチタスク学習と本質的な関係を解釈可能かつスパースなグラフで推定する新しい手法を提案する。
このグラフは各タスクのモデルパラメータと同時に学習するため、特定の予測問題におけるタスク間の臨界関係を反映する。
- 参考スコア(独自算出の注目度): 18.293397644865454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel methodology to jointly perform multi-task learning and
infer intrinsic relationship among tasks by an interpretable and sparse graph.
Unlike existing multi-task learning methodologies, the graph structure is not
assumed to be known a priori or estimated separately in a preprocessing step.
Instead, our graph is learned simultaneously with model parameters of each
task, thus it reflects the critical relationship among tasks in the specific
prediction problem. We characterize graph structure with its weighted adjacency
matrix and show that the overall objective can be optimized alternatively until
convergence. We also show that our methodology can be simply extended to a
nonlinear form by being embedded into a multi-head radial basis function
network (RBFN). Extensive experiments, against six state-of-the-art
methodologies, on both synthetic data and real-world applications suggest that
our methodology is able to reduce generalization error, and, at the same time,
reveal a sparse graph over tasks that is much easier to interpret.
- Abstract(参考訳): 本稿では,タスク間のマルチタスク学習と本質的な関係を解釈可能かつスパースなグラフで推定する手法を提案する。
既存のマルチタスク学習手法とは異なり、グラフ構造は事前処理の段階で事前処理や別々に見積もられることはない。
その代わりに、各タスクのモデルパラメータと同時にグラフを学習し、特定の予測問題におけるタスク間の臨界関係を反映する。
グラフ構造を重み付き隣接行列で特徴付け、収束まで全体の目的を代替的に最適化できることを示す。
また,この手法をマルチヘッドラジアル基底関数ネットワーク(RBFN)に組み込むことで,非線形形式に簡単に拡張できることを示す。
合成データと実世界のアプリケーションの両方における6つの最先端手法に対する大規模な実験は、我々の手法が一般化誤差を低減できることを示唆し、同時に、より容易に解釈できるタスク上のスパースグラフを明らかにしている。
関連論文リスト
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - Exploring Correlations of Self-Supervised Tasks for Graphs [6.977921096191354]
本稿では,タスク相関に基づくグラフ自己教師型学習を新たに理解することを目的とする。
我々は,ある特定のタスクによって訓練された他のタスクにおける表現の性能を評価し,タスク相関を定量化するための相関値を定義した。
本稿では,タスク相関を説明するグラフタスク相関モデリング(GraphTCM)を提案する。
論文 参考訳(メタデータ) (2024-05-07T12:02:23Z) - Rethinking Dimensional Rationale in Graph Contrastive Learning from Causal Perspective [15.162584339143239]
グラフコントラスト学習(Graph contrastive learning)は、グラフの様々な摂動から不変情報を捉えるのに優れた一般的な学習パラダイムである。
最近の研究は、グラフから構造的理性を探究することに集中し、不変情報の識別可能性を高める。
本稿では,学習可能な次元理性獲得ネットワークと冗長性低減制約を導入した,次元理性対応グラフコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-16T10:05:18Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Sparse Graph Learning from Spatiotemporal Time Series [16.427698929775023]
本稿では,グラフ上の分布として関係依存を学習するグラフ学習フレームワークを提案する。
提案手法は,エンドツーエンドの予測アーキテクチャのグラフ学習コンポーネントと同様に,スタンドアローンのグラフ識別手法として利用できることを示す。
論文 参考訳(メタデータ) (2022-05-26T17:02:43Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
少数のアンカー点とテンソルシャッテンp-ノルム最小化による効率的な多重グラフ学習モデルを提案する。
具体的には、各ビューに対してアンカーグラフを用いて、隠蔽かつトラクタブルな大きなグラフを構築する。
本研究では,データサイズと線形にスケールする効率的なアルゴリズムを開発し,提案したモデルを解く。
論文 参考訳(メタデータ) (2021-06-29T13:10:56Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
本稿では,グラフデータを用いた自己教師付き表現学習のための概念的単純かつ効果的なモデルを提案する。
古典的カノニカル相関解析にインスパイアされた,革新的な特徴レベルの目的を最適化する。
提案手法は、7つの公開グラフデータセット上で競合的に動作する。
論文 参考訳(メタデータ) (2021-06-23T15:55:47Z) - Towards Interpretable Multi-Task Learning Using Bilevel Programming [18.293397644865454]
解釈可能なマルチタスク学習は、学習したモデルの予測性能に基づいて、タスク関係のスパースグラフを学習するものとして表現することができる。
一般化性能を犠牲にすることなく、学習したモデルの解釈性や、合成データと実データとの関係を実証的に改善する方法を示す。
論文 参考訳(メタデータ) (2020-09-11T15:04:27Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
グラフ学習は、複数のビューから統一的で堅牢なグラフを学ぶ能力を備えた、マルチビュークラスタリングのための有望なテクニックとして登場した。
本稿では,統合目的関数における多視点一貫性と多視点不整合を同時にモデル化する,新しい多視点グラフ学習フレームワークを提案する。
12のマルチビューデータセットに対する実験は、提案手法の堅牢性と効率性を実証した。
論文 参考訳(メタデータ) (2020-08-24T06:11:29Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。