論文の概要: Scalable Deep Metric Learning on Attributed Graphs
- arxiv url: http://arxiv.org/abs/2411.13014v1
- Date: Wed, 20 Nov 2024 03:34:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:10:18.316878
- Title: Scalable Deep Metric Learning on Attributed Graphs
- Title(参考訳): 分散グラフによるスケーラブルなDeep Metric Learning
- Authors: Xiang Li, Gagan Agrawal, Ruoming Jin, Rajiv Ramnath,
- Abstract要約: 本研究では,深度測定と非偏差学習を併用したグラフ埋め込み手法を提案する。
マルチクラス損失関数に基づいて、半教師なし学習のためのDMTと教師なしケースのためのDMAT-iという2つのアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 10.092560681589578
- License:
- Abstract: We consider the problem of constructing embeddings of large attributed graphs and supporting multiple downstream learning tasks. We develop a graph embedding method, which is based on extending deep metric and unbiased contrastive learning techniques to 1) work with attributed graphs, 2) enabling a mini-batch based approach, and 3) achieving scalability. Based on a multi-class tuplet loss function, we present two algorithms -- DMT for semi-supervised learning and DMAT-i for the unsupervised case. Analyzing our methods, we provide a generalization bound for the downstream node classification task and for the first time relate tuplet loss to contrastive learning. Through extensive experiments, we show high scalability of representation construction, and in applying the method for three downstream tasks (node clustering, node classification, and link prediction) better consistency over any single existing method.
- Abstract(参考訳): 本稿では,大規模属性グラフの埋め込み構築と,下流学習タスクのサポートについて考察する。
深度メトリックと非偏りの対照的な学習手法を拡張したグラフ埋め込み法を開発した。
1)属性付きグラフで作業する。
2)ミニバッチベースのアプローチを有効にし、
3)スケーラビリティを実現する。
マルチクラスタプルト損失関数に基づき、半教師なし学習のためのDMTと教師なしケースのためのDMAT-iの2つのアルゴリズムを提案する。
提案手法を解析し、下流ノード分類タスクに限定した一般化を提供し、初めてタプルト損失とコントラスト学習を関連付ける。
大規模な実験により,表現構成のスケーラビリティが向上し,ノードクラスタリング,ノード分類,リンク予測といった3つのダウンストリームタスクに対して,既存の手法よりも一貫性が向上することを示す。
関連論文リスト
- Unsupervised Multiplex Graph Learning with Complementary and Consistent
Information [20.340977728674698]
非教師付き多重グラフ学習(UMGL)は、下流の異なるタスクに対して大きな効果を発揮することが示されている。
従来の手法は通常、実用上の問題、すなわちサンプル外問題やノイズ問題を見落としている。
本稿では,相補的情報と一貫した情報の両方を効果的かつ効率的に探索する手法を提案する。
論文 参考訳(メタデータ) (2023-08-03T08:24:08Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - A Comprehensive Analytical Survey on Unsupervised and Semi-Supervised
Graph Representation Learning Methods [4.486285347896372]
本調査は,グラフ埋め込み手法のすべての主要なクラスを評価することを目的としている。
我々は,手動の特徴工学,行列分解,浅部ニューラルネットワーク,深部グラフ畳み込みネットワークなどの手法を含む分類学を用いてグラフ埋め込み手法を編成した。
我々はPyTorch GeometricおよびDGLライブラリ上で実験を設計し、異なるマルチコアCPUおよびGPUプラットフォーム上で実験を行った。
論文 参考訳(メタデータ) (2021-12-20T07:50:26Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
少数のアンカー点とテンソルシャッテンp-ノルム最小化による効率的な多重グラフ学習モデルを提案する。
具体的には、各ビューに対してアンカーグラフを用いて、隠蔽かつトラクタブルな大きなグラフを構築する。
本研究では,データサイズと線形にスケールする効率的なアルゴリズムを開発し,提案したモデルを解く。
論文 参考訳(メタデータ) (2021-06-29T13:10:56Z) - Learning an Interpretable Graph Structure in Multi-Task Learning [18.293397644865454]
本稿では,タスク間のマルチタスク学習と本質的な関係を解釈可能かつスパースなグラフで推定する新しい手法を提案する。
このグラフは各タスクのモデルパラメータと同時に学習するため、特定の予測問題におけるタスク間の臨界関係を反映する。
論文 参考訳(メタデータ) (2020-09-11T18:58:14Z) - Hierarchical and Unsupervised Graph Representation Learning with
Loukas's Coarsening [9.12816196758482]
本稿では,属性グラフを用いた教師なしグラフ表現学習法を提案する。
このアルゴリズムは,教師なし表現学習手法における最先端技術と競合することを示す。
論文 参考訳(メタデータ) (2020-07-07T12:04:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。