論文の概要: Understanding Boolean Function Learnability on Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2009.05908v2
- Date: Wed, 16 Jun 2021 19:50:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 02:41:20.732533
- Title: Understanding Boolean Function Learnability on Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークによるブール関数学習の理解
- Authors: Anderson R. Tavares, Pedro Avelar, Jo\~ao M. Flach, Marcio Nicolau,
Luis C. Lamb, Moshe Vardi
- Abstract要約: 計算学習理論 (Computational learning theory) は、多くの式が時間内に学習可能であることを述べる。
本稿では, ニューラルネットワークを用いて, 実際にそのような公式を学習する方法について, 未研究の課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational learning theory states that many classes of boolean formulas
are learnable in polynomial time. This paper addresses the understudied subject
of how, in practice, such formulas can be learned by deep neural networks.
Specifically, we analyse boolean formulas associated with the decision version
of combinatorial optimisation problems, model sampling benchmarks, and random
3-CNFs with varying degrees of constrainedness. Our extensive experiments
indicate that: (i) regardless of the combinatorial optimisation problem,
relatively small and shallow neural networks are very good approximators of the
associated formulas; (ii) smaller formulas seem harder to learn, possibly due
to the fewer positive (satisfying) examples available; and (iii) interestingly,
underconstrained 3-CNF formulas are more challenging to learn than
overconstrained ones. Source code and relevant datasets are publicly available
(https://github.com/machine-reasoning-ufrgs/mlbf).
- Abstract(参考訳): 計算学習理論では、ブール公式の多くのクラスは多項式時間で学習可能である。
本稿では, ニューラルネットワークを用いて, 実際にそのような公式を学習する方法について検討する。
具体的には、組合せ最適化問題の決定版、モデルサンプリングベンチマーク、および制約度の異なるランダム3CNFに関するブール式を解析する。
広範な実験が示しているのは
(i)組合せ最適化問題にかかわらず、比較的小さく浅いニューラルネットワークは、関連する式を非常によく近似する。
(ii) より小さい式は学習が難しいように思われるが、おそらく、利用可能な正の(満足の)例が少なくなるためである。
興味深いことに、3-CNF式は過剰制約式よりも学習が難しい。
ソースコードと関連するデータセットが公開されている(https://github.com/machine-reasoning-ufrgs/mlbf)。
関連論文リスト
- LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - The Clock and the Pizza: Two Stories in Mechanistic Explanation of
Neural Networks [59.26515696183751]
ニューラルネットワークにおけるアルゴリズム発見は、時としてより複雑であることを示す。
単純な学習問題でさえ、驚くほど多様なソリューションを許容できることが示されています。
論文 参考訳(メタデータ) (2023-06-30T17:59:13Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
ニューラルネットワークは、個々のニューロンの活動の組み合わせの形で入力を符号化する。
これらのニューラルネットワークは、その高次元性としばしば大量のデータのため、計算上の課題を示す。
従来の手法を小さな例に適用し,実験によって生成された大きなニューラルコードに適用する。
論文 参考訳(メタデータ) (2022-10-19T11:58:26Z) - Benchmarking Compositionality with Formal Languages [64.09083307778951]
我々は,NLPにおける大規模ニューラルモデルが,データから学習しながら,原始概念をより大規模な新しい組み合わせに組み込むことができるかどうかを検討する。
多くのトランスデューサをランダムにサンプリングすることにより、ニューラルネットワークによる合成関係の学習性に寄与する特性を探索する。
モデルは完全に関係を学習するか全く学習しないかが分かる。鍵となるのはトランジッションカバレッジであり、トランジッション毎に400の例でソフトな学習可能性制限を設定する。
論文 参考訳(メタデータ) (2022-08-17T10:03:18Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Proof of the Theory-to-Practice Gap in Deep Learning via Sampling
Complexity bounds for Neural Network Approximation Spaces [5.863264019032882]
関数の近似化や積分に基づく(決定的あるいはランダム化)アルゴリズムの計算複雑性について検討する。
この分野における最も重要な問題の1つは、理論的に証明可能なニューラルネットワーク近似率を実現できるかどうかという問題である。
論文 参考訳(メタデータ) (2021-04-06T18:55:20Z) - PAC-learning gains of Turing machines over circuits and neural networks [1.4502611532302039]
私達は最低記述の長さの原則を持って来ることができるサンプル効率の潜在的な利益を研究します。
我々はチューリングマシンを用いて普遍的なモデルと回路を表現する。
回路の複雑さと密接性における古典的オープン問題との密接な関係を浮き彫りにする。
論文 参考訳(メタデータ) (2021-03-23T17:03:10Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
我々は、ニューラルネットワークの性能を評価するために、正確な解の知識を必要としない特定の損失関数を証明した。
ニューラルネットワークは、トレーニング領域内での継続的ソリューションの近似に熟練していることが示されている。
ユーザフレンドリで適応可能なオープンソースコード(ODE$mathcalN$)がGitHubで提供されている。
論文 参考訳(メタデータ) (2020-05-28T15:34:10Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。