Carousel Personalization in Music Streaming Apps with Contextual Bandits
- URL: http://arxiv.org/abs/2009.06546v2
- Date: Wed, 30 Sep 2020 15:35:12 GMT
- Title: Carousel Personalization in Music Streaming Apps with Contextual Bandits
- Authors: Walid Bendada and Guillaume Salha and Th\'eo Bontempelli
- Abstract summary: We model carousel personalization as a contextual multi-armed bandit problem with multiple plays, cascade-based updates and delayed batch feedback.
We empirically show the effectiveness of our framework at capturing characteristics of real-world carousels by addressing a large-scale playlist recommendation task on a global music streaming mobile app.
- Score: 2.305378099875569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Media services providers, such as music streaming platforms, frequently
leverage swipeable carousels to recommend personalized content to their users.
However, selecting the most relevant items (albums, artists, playlists...) to
display in these carousels is a challenging task, as items are numerous and as
users have different preferences. In this paper, we model carousel
personalization as a contextual multi-armed bandit problem with multiple plays,
cascade-based updates and delayed batch feedback. We empirically show the
effectiveness of our framework at capturing characteristics of real-world
carousels by addressing a large-scale playlist recommendation task on a global
music streaming mobile app. Along with this paper, we publicly release
industrial data from our experiments, as well as an open-source environment to
simulate comparable carousel personalization learning problems.
Related papers
- Leveraging User-Generated Reviews for Recommender Systems with Dynamic Headers [5.464901224450247]
E-commerce platforms have a vast catalog of items to cater to their customers' shopping interests.
Many models have been proposed in academic literature to generate and enhance the ranking and recall set of items in these carousels.
This work proposes a novel approach to customize the header generation process of these carousels.
arXiv Detail & Related papers (2024-09-11T21:18:21Z) - MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions [69.9122231800796]
We present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions.
We propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos.
Our dataset potentially paves the path for fine-grained large multimodal-language model training.
arXiv Detail & Related papers (2024-07-30T16:43:24Z) - Follow-Your-Pose v2: Multiple-Condition Guided Character Image Animation for Stable Pose Control [77.08568533331206]
Follow-Your-Pose v2 can be trained on noisy open-sourced videos readily available on the internet.
Our approach outperforms state-of-the-art methods by a margin of over 35% across 2 datasets and on 7 metrics.
arXiv Detail & Related papers (2024-06-05T08:03:18Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
We explore the application of Large Language Models (LLMs) to the pre-training of music.
To address the challenges associated with misaligned measures from different tracks during generation, we propose a Synchronized Multi-Track ABC Notation (SMT-ABC Notation)
Our contributions include a series of models capable of handling up to 8192 tokens, covering 90% of the symbolic music data in our training set.
arXiv Detail & Related papers (2024-04-09T15:35:52Z) - ActAnywhere: Subject-Aware Video Background Generation [62.57759679425924]
Generating video background that tailors to foreground subject motion is an important problem for the movie industry and visual effects community.
This task involves background that aligns with the motion and appearance of the foreground subject, while also complies with the artist's creative intention.
We introduce ActAnywhere, a generative model that automates this process which traditionally requires tedious manual efforts.
arXiv Detail & Related papers (2024-01-19T17:16:16Z) - A Scalable Framework for Automatic Playlist Continuation on Music
Streaming Services [5.215058915075775]
We introduce a general framework to build scalable yet effective Automatic Playlist Continuation models.
We demonstrate the relevance of this framework through in-depth experimental validation on Spotify's Million Playlist dataset.
We report results from a large-scale online A/B test on this service, emphasizing the practical impact of our approach.
arXiv Detail & Related papers (2023-04-12T08:46:04Z) - Talk the Walk: Synthetic Data Generation for Conversational Music
Recommendation [62.019437228000776]
We present TalkWalk, which generates realistic high-quality conversational data by leveraging encoded expertise in widely available item collections.
We generate over one million diverse conversations in a human-collected dataset.
arXiv Detail & Related papers (2023-01-27T01:54:16Z) - Measuring the User Satisfaction in a Recommendation Interface with
Multiple Carousels [7.8851236034886645]
It is common for video-on-demand and music streaming services to adopt a user interface composed of several recommendation lists.
We propose a two-dimensional evaluation protocol for a carousel setting that will measure the quality of a recommendation carousel.
arXiv Detail & Related papers (2021-05-14T20:33:51Z) - A Methodology for the Offline Evaluation of Recommender Systems in a
User Interface with Multiple Carousels [7.8851236034886645]
Video-on-demand and music streaming services provide the user with a page consisting of several recommendation lists.
Finding efficient strategies to select which carousels to display is an active research topic of great industrial interest.
We propose an offline evaluation protocol for a carousel setting in which the recommendation quality of a model is measured by how much it improves upon that of an already available set of carousels.
arXiv Detail & Related papers (2021-05-13T13:14:59Z) - A Real-Time Whole Page Personalization Framework for E-Commerce [13.254747746069139]
E-commerce platforms contain multiple carousels on their homepage.
Items within a carousel may change dynamically based on sequential user actions.
We present a scalable end-to-end production system to optimally rank item-carousels in real-time on the Walmart online grocery homepage.
arXiv Detail & Related papers (2020-12-08T19:08:41Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.