論文の概要: Unsupervised Abstractive Dialogue Summarization for Tete-a-Tetes
- arxiv url: http://arxiv.org/abs/2009.06851v1
- Date: Tue, 15 Sep 2020 03:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 05:12:09.630177
- Title: Unsupervised Abstractive Dialogue Summarization for Tete-a-Tetes
- Title(参考訳): tete-a-tetesのための教師なし抽象対話要約
- Authors: Xinyuan Zhang, Ruiyi Zhang, Manzil Zaheer, Amr Ahmed
- Abstract要約: テテ-ア-テト(SuTaT)のための非教師なし抽象的対話要約モデルを提案する。
SuTaTは条件付き生成モジュールと2つの教師なし要約モジュールからなる。
実験の結果,SuTaTは自動評価と人的評価の両方において教師なし対話要約よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 49.901984490961624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-quality dialogue-summary paired data is expensive to produce and
domain-sensitive, making abstractive dialogue summarization a challenging task.
In this work, we propose the first unsupervised abstractive dialogue
summarization model for tete-a-tetes (SuTaT). Unlike standard text
summarization, a dialogue summarization method should consider the
multi-speaker scenario where the speakers have different roles, goals, and
language styles. In a tete-a-tete, such as a customer-agent conversation, SuTaT
aims to summarize for each speaker by modeling the customer utterances and the
agent utterances separately while retaining their correlations. SuTaT consists
of a conditional generative module and two unsupervised summarization modules.
The conditional generative module contains two encoders and two decoders in a
variational autoencoder framework where the dependencies between two latent
spaces are captured. With the same encoders and decoders, two unsupervised
summarization modules equipped with sentence-level self-attention mechanisms
generate summaries without using any annotations. Experimental results show
that SuTaT is superior on unsupervised dialogue summarization for both
automatic and human evaluations, and is capable of dialogue classification and
single-turn conversation generation.
- Abstract(参考訳): 高品質な対話要約データの作成とドメインセンシティブ化は高価であり、抽象的対話要約は難しい課題である。
本研究では,tete-a-tete (sutat) に対する非教師なし抽象対話要約モデルを提案する。
標準テキスト要約とは異なり、対話要約法は話者が異なる役割、目標、言語スタイルを持つマルチスピーカーシナリオを考慮すべきである。
顧客とエージェントの会話のようなテテテテでは、SuTaTは顧客発話とエージェント発話を別々にモデル化し、相関を保ちながら各話者を要約することを目的としている。
SuTaTは条件付き生成モジュールと2つの教師なし要約モジュールからなる。
条件生成モジュールは、2つの潜伏空間間の依存関係をキャプチャする変分オートエンコーダフレームワークにおいて、2つのエンコーダと2つのデコーダを含む。
同じエンコーダとデコーダで、文レベルの自己保持機構を備えた2つの教師なし要約モジュールは、アノテーションを使わずに要約を生成する。
実験の結果,sutatは自動評価と人間評価の両方において教師なしの対話要約に優れ,対話分類と単ターン会話生成が可能であることがわかった。
関連論文リスト
- Instructive Dialogue Summarization with Query Aggregations [41.89962538701501]
本稿では,対話要約モデルの能力集合を拡張するために,命令精細言語モデルを提案する。
高品質なクエリベースの要約三重項を合成するための3段階のアプローチを提案する。
多目的インストラクティブトリプルを用いた3つの要約データセット上で、InstructDSと呼ばれる統一モデルをトレーニングすることにより、対話要約モデルの能力を拡大する。
論文 参考訳(メタデータ) (2023-10-17T04:03:00Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - Self- and Pseudo-self-supervised Prediction of Speaker and Key-utterance
for Multi-party Dialogue Reading Comprehension [46.69961067676279]
マルチパーティ対話機械読解(MRC)は,複数の話者が対話を行うため,大きな課題をもたらす。
従来のモデルは、複雑なグラフベースのモジュールを使用して話者情報フローを組み込む方法に重点を置いていた。
本稿では、話者情報の流れを暗黙的にモデル化するために、話者とキー発話における2つの労働自由自助的・疑似自己監督型予測タスクを設計する。
論文 参考訳(メタデータ) (2021-09-08T16:51:41Z) - Controllable Abstractive Dialogue Summarization with Sketch Supervision [56.59357883827276]
本モデルは,最大50.79のROUGE-Lスコアを持つ最大対話要約コーパスSAMSumの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-28T19:05:36Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
DialoguE Contradiction Detection Task(DECODE)と、人間とロボットの矛盾した対話の両方を含む新しい会話データセットを紹介します。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
論文 参考訳(メタデータ) (2020-12-24T18:47:49Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
本稿では,タスク指向対話タスクにおいて,どのモデルが本質的に最も有意義な表現を担っているかを明らかにするために,事前学習された言語モデルについて検討する。
我々は、アノテートラベルを教師付き方法で固定された事前学習言語モデルの上に、分類器プローブとしてフィードフォワード層を微調整する。
論文 参考訳(メタデータ) (2020-10-26T21:34:39Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。