Domain Knowledge Empowered Structured Neural Net for End-to-End Event
Temporal Relation Extraction
- URL: http://arxiv.org/abs/2009.07373v2
- Date: Tue, 6 Oct 2020 16:58:49 GMT
- Title: Domain Knowledge Empowered Structured Neural Net for End-to-End Event
Temporal Relation Extraction
- Authors: Rujun Han, Yichao Zhou, Nanyun Peng
- Abstract summary: We propose a framework that enhances deep neural network with distributional constraints constructed by probabilistic domain knowledge.
We solve the constrained inference problem via Lagrangian Relaxation and apply it on end-to-end event temporal relation extraction tasks.
- Score: 44.95973272921582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting event temporal relations is a critical task for information
extraction and plays an important role in natural language understanding. Prior
systems leverage deep learning and pre-trained language models to improve the
performance of the task. However, these systems often suffer from two
short-comings: 1) when performing maximum a posteriori (MAP) inference based on
neural models, previous systems only used structured knowledge that are assumed
to be absolutely correct, i.e., hard constraints; 2) biased predictions on
dominant temporal relations when training with a limited amount of data. To
address these issues, we propose a framework that enhances deep neural network
with distributional constraints constructed by probabilistic domain knowledge.
We solve the constrained inference problem via Lagrangian Relaxation and apply
it on end-to-end event temporal relation extraction tasks. Experimental results
show our framework is able to improve the baseline neural network models with
strong statistical significance on two widely used datasets in news and
clinical domains.
Related papers
- Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - An End-to-End Time Series Model for Simultaneous Imputation and Forecast [14.756607742477252]
We develop an end-to-end time series model that aims to learn the inference relation and make a multiple-step ahead forecast.
Our framework trains jointly two neural networks, one to learn the feature-wise correlations and the other for the modeling of temporal behaviors.
arXiv Detail & Related papers (2023-06-01T15:08:22Z) - Temporal Relation Extraction with a Graph-Based Deep Biaffine Attention
Model [0.0]
We propose a novel temporal information extraction model based on deep biaffine attention.
We experimentally demonstrate that our model achieves state-of-the-art performance in temporal relation extraction.
arXiv Detail & Related papers (2022-01-16T19:40:08Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
We propose a neural layer based on the ideas of temporal attention and multi-head attention to extend the capability of the underlying neural network.
The effectiveness of our approach is validated using large-scale limit-order book market data.
arXiv Detail & Related papers (2022-01-14T14:02:19Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
Deep learning is considered as a powerful tool with high flexibility to approximate functions.
Our approach is based on a posteriori error estimation in which the adjoint problem is solved for the error localization.
An efficient and easy to implement algorithm is developed to obtain a posteriori error estimate for multiple goal functionals.
arXiv Detail & Related papers (2021-12-21T16:59:44Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Latent Network Structure Learning from High Dimensional Multivariate
Point Processes [5.079425170410857]
We propose a new class of nonstationary Hawkes processes to characterize the complex processes underlying the observed data.
We estimate the latent network structure using an efficient sparse least squares estimation approach.
We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
arXiv Detail & Related papers (2020-04-07T17:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.