An Imprecise Probability Approach for Abstract Argumentation based on
Credal Sets
- URL: http://arxiv.org/abs/2009.07405v1
- Date: Wed, 16 Sep 2020 00:52:18 GMT
- Title: An Imprecise Probability Approach for Abstract Argumentation based on
Credal Sets
- Authors: Mariela Morveli-Espinoza, Juan Carlos Nieves, and Cesar Augusto Tacla
- Abstract summary: We tackle the problem of calculating the degree of uncertainty of the extensions considering that the probability values of the arguments are imprecise.
We use credal sets to model the uncertainty values of arguments and from these credal sets, we calculate the lower and upper bounds of the extensions.
- Score: 1.3764085113103217
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Some abstract argumentation approaches consider that arguments have a degree
of uncertainty, which impacts on the degree of uncertainty of the extensions
obtained from a abstract argumentation framework (AAF) under a semantics. In
these approaches, both the uncertainty of the arguments and of the extensions
are modeled by means of precise probability values. However, in many real life
situations the exact probabilities values are unknown and sometimes there is a
need for aggregating the probability values of different sources. In this
paper, we tackle the problem of calculating the degree of uncertainty of the
extensions considering that the probability values of the arguments are
imprecise. We use credal sets to model the uncertainty values of arguments and
from these credal sets, we calculate the lower and upper bounds of the
extensions. We study some properties of the suggested approach and illustrate
it with an scenario of decision making.
Related papers
- To Believe or Not to Believe Your LLM [51.2579827761899]
We explore uncertainty quantification in large language models (LLMs)
We derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large.
We conduct a series of experiments which demonstrate the advantage of our formulation.
arXiv Detail & Related papers (2024-06-04T17:58:18Z) - Model-Agnostic Covariate-Assisted Inference on Partially Identified
Causal Effects [2.1638817206926855]
Many causal estimands are only partially identifiable since they depend on the unobservable joint distribution between potential outcomes.
We propose a unified and model-agnostic inferential approach for a wide class of partially identified estimands.
arXiv Detail & Related papers (2023-10-12T08:17:30Z) - Decision-Making Under Uncertainty: Beyond Probabilities [5.358161704743754]
A classical assumption is that probabilities can sufficiently capture all uncertainty in a system.
In this paper, the focus is on the uncertainty that goes beyond this classical interpretation.
We show several solution techniques for both discrete and continuous models.
arXiv Detail & Related papers (2023-03-10T10:53:33Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
We propose a probabilistic paradigm to estimate a diverse set of counterfactuals.
We treat the perturbations as random variables endowed with prior distribution functions.
A gradient based sampler with superior convergence characteristics efficiently computes the posterior samples.
arXiv Detail & Related papers (2023-01-21T00:21:11Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
We propose a general approach to define a many-valued preferential interpretation of gradual argumentation semantics.
As a proof of concept, in the finitely-valued case, an Answer set Programming approach is proposed for conditional reasoning.
The paper also develops and discusses a probabilistic semantics for gradual argumentation, which builds on the many-valued conditional semantics.
arXiv Detail & Related papers (2022-12-14T22:10:46Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Admissibility in Strength-based Argumentation: Complexity and Algorithms
(Extended Version with Proofs) [1.5828697880068698]
We study the adaptation of admissibility-based semantics to Strength-based Argumentation Frameworks (StrAFs)
Especially, we show that the strong admissibility defined in the literature does not satisfy a desirable property, namely Dung's fundamental lemma.
We propose a translation in pseudo-Boolean constraints for computing (strong and weak) extensions.
arXiv Detail & Related papers (2022-07-05T18:42:04Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Orthogonal Statistical Learning [49.55515683387805]
We provide non-asymptotic excess risk guarantees for statistical learning in a setting where the population risk depends on an unknown nuisance parameter.
We show that if the population risk satisfies a condition called Neymanity, the impact of the nuisance estimation error on the excess risk bound achieved by the meta-algorithm is of second order.
arXiv Detail & Related papers (2019-01-25T02:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.