Decision-Making Under Uncertainty: Beyond Probabilities
- URL: http://arxiv.org/abs/2303.05848v1
- Date: Fri, 10 Mar 2023 10:53:33 GMT
- Title: Decision-Making Under Uncertainty: Beyond Probabilities
- Authors: Thom Badings and Thiago D. Sim\~ao and Marnix Suilen and Nils Jansen
- Abstract summary: A classical assumption is that probabilities can sufficiently capture all uncertainty in a system.
In this paper, the focus is on the uncertainty that goes beyond this classical interpretation.
We show several solution techniques for both discrete and continuous models.
- Score: 5.358161704743754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This position paper reflects on the state-of-the-art in decision-making under
uncertainty. A classical assumption is that probabilities can sufficiently
capture all uncertainty in a system. In this paper, the focus is on the
uncertainty that goes beyond this classical interpretation, particularly by
employing a clear distinction between aleatoric and epistemic uncertainty. The
paper features an overview of Markov decision processes (MDPs) and extensions
to account for partial observability and adversarial behavior. These models
sufficiently capture aleatoric uncertainty but fail to account for epistemic
uncertainty robustly. Consequently, we present a thorough overview of so-called
uncertainty models that exhibit uncertainty in a more robust interpretation. We
show several solution techniques for both discrete and continuous models,
ranging from formal verification, over control-based abstractions, to
reinforcement learning. As an integral part of this paper, we list and discuss
several key challenges that arise when dealing with rich types of uncertainty
in a model-based fashion.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications.
Current methods often struggle to accurately identify, measure, and address the true uncertainty.
This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty.
arXiv Detail & Related papers (2024-10-26T15:07:15Z) - (Implicit) Ensembles of Ensembles: Epistemic Uncertainty Collapse in Large Models [3.0539022029583953]
Epistemic uncertainty is crucial for safety-critical applications and out-of-distribution detection tasks.
We uncover a paradoxical phenomenon in deep learning models: an epistemic uncertainty collapse as model complexity increases.
arXiv Detail & Related papers (2024-09-04T11:45:55Z) - Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning [12.490614705930676]
Current approaches to model-based offline Reinforcement Learning (RL) often incorporate uncertainty-based reward penalization.
We argue that this penalization introduces excessive conservatism, potentially resulting in suboptimal policies through underestimation.
We identify as an important cause of over-penalization the lack of a reliable uncertainty estimator capable of propagating uncertainties in the Bellman operator.
arXiv Detail & Related papers (2024-06-06T13:58:41Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
We introduce a deep learning framework that learns the one-to-many mappings between the inputs and outputs, together with faithful uncertainty measures.
Our framework demonstrates significantly more accurate uncertainty estimation than the current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-25T05:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.