論文の概要: An Algorithm for Out-Of-Distribution Attack to Neural Network Encoder
- arxiv url: http://arxiv.org/abs/2009.08016v4
- Date: Wed, 27 Jan 2021 17:58:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-10-17 09:02:24.792201
- Title: An Algorithm for Out-Of-Distribution Attack to Neural Network Encoder
- Title(参考訳): ニューラルネットワークエンコーダへの分散攻撃の一アルゴリズム
- Authors: Liang Liang, Linhai Ma, Linchen Qian, Jiasong Chen
- Abstract要約: Out-Of-Distribution (OOD) サンプルはトレーニングセットの分布に従わないため、OOD サンプルの予測されたクラスラベルは意味のないものとなる。
本手法は理論的保証がなく,OODアタックアルゴリズムにより事実上破壊可能であることを示す。
また、Glow chance-based OOD detectionも破壊可能であることも示している。
- 参考スコア(独自算出の注目度): 1.7305469511995404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs), especially convolutional neural networks, have
achieved superior performance on image classification tasks. However, such
performance is only guaranteed if the input to a trained model is similar to
the training samples, i.e., the input follows the probability distribution of
the training set. Out-Of-Distribution (OOD) samples do not follow the
distribution of training set, and therefore the predicted class labels on OOD
samples become meaningless. Classification-based methods have been proposed for
OOD detection; however, in this study we show that this type of method has no
theoretical guarantee and is practically breakable by our OOD Attack algorithm
because of dimensionality reduction in the DNN models. We also show that Glow
likelihood-based OOD detection is breakable as well.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)、特に畳み込みニューラルネットワークは、画像分類タスクにおいて優れたパフォーマンスを実現している。
しかしながら、そのようなパフォーマンスは、トレーニングモデルの入力がトレーニングサンプルに類似している場合、すなわち、入力がトレーニングセットの確率分布に従う場合にのみ保証される。
Out-Of-Distribution (OOD)サンプルはトレーニングセットの分布に従わないため、OODサンプルの予測されたクラスラベルは意味のないものとなる。
OOD検出のための分類に基づく手法が提案されているが,本研究では,本手法は理論的保証がなく,DNNモデルにおける次元減少のため,OODアタックアルゴリズムにより実質的に破壊可能であることを示す。
また、Glow chance-based OOD detectionも破壊可能であることを示す。
関連論文リスト
- Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Detection of out-of-distribution samples using binary neuron activation
patterns [0.26249027950824505]
未確認入力を新しいものとして識別する能力は、自動運転車、無人航空機、ロボットなどの安全上重要な応用に不可欠である。
OODサンプルを検出するための既存のアプローチでは、DNNをブラックボックスとして扱い、出力予測の信頼性スコアを評価する。
本稿では,新しいOOD検出法を提案する。本手法は,ReLUアーキテクチャにおけるニューロン活性化パターン(NAP)の理論的解析に動機付けられている。
論文 参考訳(メタデータ) (2022-12-29T11:42:46Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - WeShort: Out-of-distribution Detection With Weak Shortcut structure [0.0]
我々は,OODデータに対するニューラルネットワークの過信を低減するために,シンプルで効果的なポストホック手法WeShortを提案する。
提案手法はOOD検出の異なるスコアと互換性があり,ネットワークの異なるアーキテクチャによく対応できる。
論文 参考訳(メタデータ) (2022-06-23T07:59:10Z) - Effective Out-of-Distribution Detection in Classifier Based on
PEDCC-Loss [5.614122064282257]
PEDCC-Loss を用いたアウト・オブ・ディストリビューション例の検出に有効なアルゴリズムを提案する。
PEDCC(Predefined Evenly-Distribution Class Centroids)分類器によって出力される信頼スコアの性質を数学的に解析する。
次に,より効果的なスコアリング機能を構築し,分布内(ID)と分布外(out-of-distriion)を区別する。
論文 参考訳(メタデータ) (2022-04-10T11:47:29Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
ディープ・ニューラル・ネットワークに基づく分類器のトレーニングデータは、通常同じ分布からサンプリングされる。
トレーニングサンプルから遠く離れた分布からテストサンプルの一部を引き出すと、トレーニングされたニューラルネットワークはこれらのOODサンプルに対して高い信頼性の予測を行う傾向にある。
本稿では,これらの課題を克服するため,Wasserstein を用いたアウト・オブ・ディストリビューション検出(WOOD)手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:35:15Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
本稿では,Deep Neural Networks の Out Of Distribution (OOD) 検出問題を統計的仮説テスト問題として考察する。
このフレームワークに基づいて、低階統計に基づいた新しいOOD手順を提案します。
本手法は,ネットワークパラメータの再トレーニングを行わずに,oodベンチマークの精度が向上した。
論文 参考訳(メタデータ) (2021-02-25T16:14:47Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Probing Predictions on OOD Images via Nearest Categories [97.055916832257]
ニューラルネットワークが未確認のクラスや破損したイメージから画像を分類する際のアウト・オブ・ディストリビューション(OOD)予測挙動について検討する。
我々は、トレーニングセットにおいて、最も近い隣人と同じラベルで分類されたOOD入力の分数を計算するため、新しい測度、最も近いカテゴリ一般化(NCG)を導入する。
我々は、OODデータがロバストネス半径よりも遥かに遠くにある場合でも、ロバストネットワークは自然訓練よりも一貫してNCG精度が高いことを発見した。
論文 参考訳(メタデータ) (2020-11-17T07:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。