論文の概要: Multi-objective dynamic programming with limited precision
- arxiv url: http://arxiv.org/abs/2009.08198v1
- Date: Thu, 17 Sep 2020 10:34:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 08:35:07.538731
- Title: Multi-objective dynamic programming with limited precision
- Title(参考訳): 精度に制限のある多目的動的プログラミング
- Authors: L. Mandow, J. L. P\'erez de la Cruz, N. Pozas
- Abstract要約: 興味深い場合の大多数では、解の数は指数的あるいは無限である。
提案手法は,Whiteの多目的値イテレーション動的プログラミングアルゴリズムに基づく限定的精度アプローチを用いて,全解の集合を近似する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of approximating the set of all solutions
for Multi-objective Markov Decision Processes. We show that in the vast
majority of interesting cases, the number of solutions is exponential or even
infinite. In order to overcome this difficulty we propose to approximate the
set of all solutions by means of a limited precision approach based on White's
multi-objective value-iteration dynamic programming algorithm. We prove that
the number of calculated solutions is tractable and show experimentally that
the solutions obtained are a good approximation of the true Pareto front.
- Abstract(参考訳): 本稿では,多目的マルコフ決定過程に対する全解の集合を近似する問題に対処する。
興味深い場合のほとんどにおいて、解の数は指数関数的、あるいは無限であることを示している。
この難しさを克服するために,Whiteの多目的値イテレーション動的プログラミングアルゴリズムに基づく限定的精度アプローチを用いて,全ての解の集合を近似することを提案する。
計算された解の数が扱いやすいことを証明し、得られた解が真のパレート前線のよい近似であることを実験的に示す。
関連論文リスト
- The Differentiable Feasibility Pump [49.55771920271201]
本稿では,従来の実現可能性ポンプとその追随点の多くを,特定のパラメータを持つ勾配差アルゴリズムとみなすことができることを示す。
この再解釈の中心的な側面は、伝統的なアルゴリズムがそのコストに関して線形緩和の解を区別することを観察することである。
論文 参考訳(メタデータ) (2024-11-05T22:26:51Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Multi-objective QUBO Solver: Bi-objective Quadratic Assignment [0.0]
商用QUBOソルバを多目的ソルバとしてサポートするアルゴリズムを拡張した最初の試みを示す。
提案した多目的DAアルゴリズムは、二目的の二次割当て問題に対して検証される。
論文 参考訳(メタデータ) (2022-05-26T14:48:03Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
強化学習アルゴリズムは通常、特定のタスクの単一のソリューションを学ぶことに限定される。
連続的あるいは離散的な低次元潜在変数に条件付きポリシーを訓練することにより、無限に多くの解を学習できるRL法を提案する。
論文 参考訳(メタデータ) (2021-03-12T04:54:31Z) - Learning the Solution Manifold in Optimization and Its Application in
Motion Planning [4.177892889752434]
我々は、変数のような変数上の多様体を学習し、そのようなモデルは無限の解の集合を表す。
本フレームワークでは,この重要度を用いて問題推定を行う。
本研究では,高次元パラメータの最適化を含む動き計画問題に適用する。
論文 参考訳(メタデータ) (2020-07-24T08:05:36Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
いくつかの問題には、多くの非支配的な解をもたらす多くの目的がある。
本稿では,最も重要な解を得るために設計された新しいアルゴリズムを提案する。
このアルゴリズムは無人航空機(UAV)ミッション計画問題における実世界の応用に応用されている。
論文 参考訳(メタデータ) (2020-02-20T17:07:08Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z) - Pareto Multi-Task Learning [53.90732663046125]
マルチタスク学習は複数の相関タスクを同時に解くための強力な方法である。
異なるタスクが互いに衝突する可能性があるため、すべてのタスクを最適化するひとつのソリューションを見つけることは、しばしば不可能である。
近年,マルチタスク学習を多目的最適化として活用することにより,タスク間のトレードオフが良好である1つのパレート最適解を求める方法が提案されている。
論文 参考訳(メタデータ) (2019-12-30T08:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。