Enhancing Retrieval in QA Systems with Derived Feature Association
- URL: http://arxiv.org/abs/2410.03754v1
- Date: Wed, 2 Oct 2024 05:24:49 GMT
- Title: Enhancing Retrieval in QA Systems with Derived Feature Association
- Authors: Keyush Shah, Abhishek Goyal, Isaac Wasserman,
- Abstract summary: Retrieval augmented generation (RAG) has become the standard in long context question answering (QA) systems.
We propose a novel extension to RAG systems, which we call Retrieval from AI Derived Documents (RAIDD)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval augmented generation (RAG) has become the standard in long context question answering (QA) systems. However, typical implementations of RAG rely on a rather naive retrieval mechanism, in which texts whose embeddings are most similar to that of the query are deemed most relevant. This has consequences in subjective QA tasks, where the most relevant text may not directly contain the answer. In this work, we propose a novel extension to RAG systems, which we call Retrieval from AI Derived Documents (RAIDD). RAIDD leverages the full power of the LLM in the retrieval process by deriving inferred features, such as summaries and example questions, from the documents at ingest. We demonstrate that this approach significantly improves the performance of RAG systems on long-context QA tasks.
Related papers
- Toward Optimal Search and Retrieval for RAG [39.69494982983534]
Retrieval-augmented generation (RAG) is a promising method for addressing some of the memory-related challenges associated with Large Language Models (LLMs)
Here, we work towards the goal of understanding how retrievers can be optimized for RAG pipelines for common tasks such as Question Answering (QA)
arXiv Detail & Related papers (2024-11-11T22:06:51Z) - Enhanced document retrieval with topic embeddings [0.0]
Document retrieval systems have experienced a revitalized interest with the advent of retrieval-augmented generation (RAG)
RAG architecture offers a lower hallucination rate than LLM-only applications.
We have devised a new vectorization method that takes into account the topic information of the document.
arXiv Detail & Related papers (2024-08-19T22:01:45Z) - RAG-QA Arena: Evaluating Domain Robustness for Long-form Retrieval Augmented Question Answering [61.19126689470398]
Long-form RobustQA (LFRQA) is a new dataset covering 26K queries and large corpora across seven different domains.
We show via experiments that RAG-QA Arena and human judgments on answer quality are highly correlated.
Only 41.3% of the most competitive LLM's answers are preferred to LFRQA's answers, demonstrating RAG-QA Arena as a challenging evaluation platform for future research.
arXiv Detail & Related papers (2024-07-19T03:02:51Z) - DEXTER: A Benchmark for open-domain Complex Question Answering using LLMs [3.24692739098077]
Open-domain complex Question Answering (QA) is a difficult task with challenges in evidence retrieval and reasoning.
We evaluate state-of-the-art pre-trained dense and sparse retrieval models in an open-domain setting.
We observe that late interaction models and surprisingly lexical models like BM25 perform well compared to other pre-trained dense retrieval models.
arXiv Detail & Related papers (2024-06-24T22:09:50Z) - SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs [85.54906813106683]
We propose a simple yet effective framework to enhance open-domain question answering (ODQA) with large language models (LLMs)
SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval (SuRe)
Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches.
arXiv Detail & Related papers (2024-04-17T01:15:54Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - Better Retrieval May Not Lead to Better Question Answering [59.1892787017522]
A popular approach to improve the system's performance is to improve the quality of the retrieved context from the IR stage.
We show that for StrategyQA, a challenging open-domain QA dataset that requires multi-hop reasoning, this common approach is surprisingly ineffective.
arXiv Detail & Related papers (2022-05-07T16:59:38Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
arXiv Detail & Related papers (2020-09-17T23:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.