Automated Stroke Rehabilitation Assessment using Wearable Accelerometers
in Free-Living Environments
- URL: http://arxiv.org/abs/2009.08798v2
- Date: Thu, 20 May 2021 22:47:23 GMT
- Title: Automated Stroke Rehabilitation Assessment using Wearable Accelerometers
in Free-Living Environments
- Authors: Xi Chen, Yu Guan, Jian-Qing Shi, Xiu-Li Du, Janet Eyre
- Abstract summary: Traditional stroke rehabilitation assessment methods can be subjective and expensive.
We developed an automated system that can predict the assessment score in an objective manner.
Comprehensive experiments were conducted to evaluate our system on both acute and chronic patients.
- Score: 13.850999550050428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stroke is known as a major global health problem, and for stroke survivors it
is key to monitor the recovery levels. However, traditional stroke
rehabilitation assessment methods (such as the popular clinical assessment) can
be subjective and expensive, and it is also less convenient for patients to
visit clinics in a high frequency. To address this issue, in this work based on
wearable sensing and machine learning techniques, we developed an automated
system that can predict the assessment score in an objective manner. With
wrist-worn sensors, accelerometer data was collected from 59 stroke survivors
in free-living environments for a duration of 8 weeks, and we aim to map the
week-wise accelerometer data (3 days per week) to the assessment score by
developing signal processing and predictive model pipeline. To achieve this, we
proposed two types of new features, which can encode the rehabilitation
information from both paralysed/non-paralysed sides while suppressing the
high-level noises such as irrelevant daily activities. Based on the proposed
features, we further developed the longitudinal mixed-effects model with
Gaussian process prior (LMGP), which can model the random effects caused by
different subjects and time slots (during the 8 weeks). Comprehensive
experiments were conducted to evaluate our system on both acute and chronic
patients, and the results suggested its effectiveness.
Related papers
- On the effectiveness of smartphone IMU sensors and Deep Learning in the detection of cardiorespiratory conditions [0.21987601456703473]
This research introduces an innovative method for the early screening of cardiorespiratory diseases based on an acquisition protocol.
We collected, in a clinical setting, a dataset featuring recordings of breathing kinematics obtained by accelerometer and gyroscope readings from five distinct body regions.
We propose an end-to-end deep learning pipeline for early cardiorespiratory disease screening, incorporating a preprocessing step segmenting the data into individual breathing cycles.
arXiv Detail & Related papers (2024-08-27T18:29:47Z) - Assessing Upper Limb Motor Function in the Immediate Post-Stroke Perioud
Using Accelerometry [0.6390468088226495]
The objective of this paper is to determine whether accelerometry-derived measurements can also be used to monitor and rapidly detect sudden changes in upper limb motor function in stroke patients.
Six binary classification models were created by training on variable data window times of paretic upper limb accelerometer feature data.
The classification models yielded Area Under the Curve (AUC) scores that ranged from 0.72 to 0.82 for 15-minute data windows to 0.77 to 0.94 for 120-minute data windows.
arXiv Detail & Related papers (2023-11-01T18:43:20Z) - Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia [16.949993123698345]
Agitation is one of the most prevalent symptoms in people with dementia (PwD)
In a previous study, we collected multimodal wearable sensor data from 17 participants for 600 days and developed machine learning models for detecting agitation in one-minute windows.
In this paper, we first implemented different undersampling methods to eliminate the imbalance problem, and came to the conclusion that only 20% of normal behaviour data were adequate to train a competitive agitation detection model.
arXiv Detail & Related papers (2023-02-07T03:14:00Z) - Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using
Smartwatches [5.132618393976799]
We aim to design an upper-limb assessment pipeline for stroke patients using smartwatches.
Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale.
arXiv Detail & Related papers (2022-12-09T14:00:49Z) - Easing Automatic Neurorehabilitation via Classification and Smoothness
Analysis [1.44744639843118]
We propose an automatic assessment pipeline that starts by recognizing patients' movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures.
A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients.
We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients' progress during the rehabilitation sessions that correspond to the clinicians' findings about each case.
arXiv Detail & Related papers (2022-12-09T13:59:14Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.