論文の概要: Monte Carlo Tree Search Based Tactical Maneuvering
- arxiv url: http://arxiv.org/abs/2009.08807v1
- Date: Sun, 13 Sep 2020 02:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 02:50:42.145486
- Title: Monte Carlo Tree Search Based Tactical Maneuvering
- Title(参考訳): モンテカルロ木探索に基づく戦術操作
- Authors: Kunal Srivastava, Amit Surana
- Abstract要約: モンテカルロ・ツリー・サーチ(MCTS)をベースとしたオンライン・フレームワークによる2機の無人航空機間の戦術的操作の同時移動について検討する。
MCTSは長い地平線を効率的に探索し、対戦機戦術を考慮しつつ、現在の状態における最良の操縦を選択するためにセルフプレイを使用する。
- 参考スコア(独自算出の注目度): 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we explore the application of simultaneous move Monte Carlo
Tree Search (MCTS) based online framework for tactical maneuvering between two
unmanned aircrafts. Compared to other techniques, MCTS enables efficient search
over long horizons and uses self-play to select best maneuver in the current
state while accounting for the opponent aircraft tactics. We explore different
algorithmic choices in MCTS and demonstrate the framework numerically in a
simulated 2D tactical maneuvering application.
- Abstract(参考訳): 本稿では, 同時移動モンテカルロ木探索(mcts)による2機の無人航空機の戦術操作のためのオンラインフレームワークの応用について検討する。
他の技術と比較して、MCTSは長い地平線を効率よく探索することができ、対戦機戦術を考慮しつつ、現在の状態における最良の操縦を選択するためにセルフプレイを使用する。
mctsの異なるアルゴリズム選択を探索し,シミュレーションによる2次元戦術操作でフレームワークを数値的に実演する。
関連論文リスト
- Provably Efficient Long-Horizon Exploration in Monte Carlo Tree Search through State Occupancy Regularization [18.25487451605638]
状態占有度を正則化した政策最適化に基づく木探索アルゴリズムを導出し,それをボリュームMCTSと呼ぶ。
本研究では,この状態占有率の正規化目標に対する近似解として,カウントベース探索とサンプリングベース動作計画が導出可能であることを示す。
我々は,いくつかのロボットナビゲーション問題に対して本手法を試行し,Volume-MCTSがAlphaZeroより優れており,長期探査特性が著しく向上していることを見出した。
論文 参考訳(メタデータ) (2024-07-07T22:58:52Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
本稿では, 正確な並列化可能なエミュレーション環境を利用して, 戦術ネットワークの環境を再現するRLフレームワークを提案する。
衛星通信(SATCOM)とUHFワイドバンド(UHF)の無線リンク間のボトルネックリンク遷移を再現した条件下で、MARLINエージェントを訓練することにより、我々のRL学習フレームワークを評価する。
論文 参考訳(メタデータ) (2023-06-27T16:15:15Z) - Combining Monte Carlo Tree Search and Heuristic Search for Weighted
Vertex Coloring [15.308312172985486]
本研究は,モンテカルロ木探索法(MCTS)と重み付き頂点色問題(Weighted Vertex Coloring Problem)の解法について検討する。
基本MCTSアルゴリズムに加えて,従来のランダムシミュレーションを他のシミュレーション手法に置き換えたいくつかの変種について検討する。
我々は、これらの組み合わせMCTSの変種を評価するために、よく知られたベンチマークインスタンスの実験を行う。
論文 参考訳(メタデータ) (2023-04-24T14:50:33Z) - Continuous Monte Carlo Graph Search [61.11769232283621]
連続モンテカルログラフサーチ(Continuous Monte Carlo Graph Search, CMCGS)は、モンテカルログラフサーチ(MCTS)のオンラインプランニングへの拡張である。
CMCGSは、計画中、複数の州で同じ行動方針を共有することで高いパフォーマンスが得られるという洞察を生かしている。
並列化によってスケールアップすることができ、学習力学モデルによる連続制御においてクロスエントロピー法(CEM)よりも優れている。
論文 参考訳(メタデータ) (2022-10-04T07:34:06Z) - Prioritized Architecture Sampling with Monto-Carlo Tree Search [54.72096546595955]
ワンショットニューラルアーキテクチャサーチ(NAS)法は,検索空間全体を1つのネットワークとして考えることにより,検索コストを大幅に削減する。
本稿では,モンテカルロ木(MCT)をモデルとした探索空間を用いたモンテカルロ木探索(MCTS)に基づくサンプリング戦略について紹介する。
公平な比較のために、CIFAR-10で評価されたマクロ検索空間、すなわちNAS-Bench-MacroのオープンソースNASベンチマークを構築する。
論文 参考訳(メタデータ) (2021-03-22T15:09:29Z) - Monte Carlo Tree Search for a single target search game on a 2-D lattice [0.0]
このプロジェクトは、AIプレイヤーが2次元格子内で静止目標を探索するゲームを想像する。
動物捕食行動のモデルであるレヴィ飛行探索(Levi Flight Search)と比較した。
論文 参考訳(メタデータ) (2020-11-29T01:07:45Z) - Playing Carcassonne with Monte Carlo Tree Search [0.0]
我々は,モンテカルロ木探索 (MCTS) とラピッドアクション値推定 (MCTS-RAVE) をカーカッソンヌのゲームで使用することを検討した。
MCTSをベースとした手法とStar2.5アルゴリズムの長所を比較し,カーカッソンヌのゲームにおける競争結果が得られたことを報告した。
論文 参考訳(メタデータ) (2020-09-27T22:35:53Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
論文 参考訳(メタデータ) (2020-07-30T16:39:22Z) - Single-Agent Optimization Through Policy Iteration Using Monte-Carlo
Tree Search [8.22379888383833]
モンテカルロ・ツリー・サーチ(MCTS)と深部強化学習の組み合わせは,2プレイヤー完全情報ゲームにおける最先端の手法である。
本稿では,MCTS の変種を利用した探索アルゴリズムについて述べる。1) 潜在的に有界な報酬を持つゲームに対する新たなアクション値正規化機構,2) 効果的な探索並列化を可能にする仮想損失関数の定義,3) 世代ごとのセルフプレイによって訓練されたポリシーネットワークについて述べる。
論文 参考訳(メタデータ) (2020-05-22T18:02:36Z) - MACER: Attack-free and Scalable Robust Training via Maximizing Certified
Radius [133.47492985863136]
敵対的トレーニングは、堅牢なモデルを学習する最も一般的な方法の1つだが、通常は攻撃に依存し、コストがかかる。
敵の訓練を使わずに頑健なモデルを学習するMACERアルゴリズムを提案する。
すべてのタスクに対してMACERは、最先端の対人訓練アルゴリズムよりもトレーニング時間が少ない。
論文 参考訳(メタデータ) (2020-01-08T05:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。