論文の概要: Personalized TV Recommendation: Fusing User Behavior and Preferences
- arxiv url: http://arxiv.org/abs/2009.08957v1
- Date: Sun, 30 Aug 2020 16:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 12:20:17.950122
- Title: Personalized TV Recommendation: Fusing User Behavior and Preferences
- Title(参考訳): パーソナライズされたテレビレコメンデーション:ユーザー行動と嗜好を融合させる
- Authors: Sheng-Chieh Lin, Ting-Wei Lin, Jing-Kai Lou, Ming-Feng Tsai, Chuan-Ju
Wang
- Abstract要約: 線形テレビ番組を推薦する2段階のランク付け手法を提案する。
提案手法はまず、時間とテレビチャンネルに関するユーザの視聴パターンを活用して、候補候補の候補を特定する。
実世界のテレビデータセットに関する実証的研究を行い、提案手法の精度と時間効率の両面から、提案手法の優れた性能を実証した。
- 参考スコア(独自算出の注目度): 15.651420399478294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a two-stage ranking approach for recommending
linear TV programs. The proposed approach first leverages user viewing patterns
regarding time and TV channels to identify potential candidates for
recommendation and then further leverages user preferences to rank these
candidates given textual information about programs. To evaluate the method, we
conduct empirical studies on a real-world TV dataset, the results of which
demonstrate the superior performance of our model in terms of both
recommendation accuracy and time efficiency.
- Abstract(参考訳): 本稿では,リニアtv番組を推薦する二段階ランキング手法を提案する。
提案手法は,まず時間とテレビチャンネルに関するユーザの視聴パターンを利用して推薦候補を識別し,さらにプログラムに関するテキスト情報から候補のランク付けを行う。
本手法を評価するために,実世界のテレビデータセットについて実証実験を行い,推薦精度と時間効率の両面で,モデルの優れた性能を示す。
関連論文リスト
- Pre-trained Language Model and Knowledge Distillation for Lightweight Sequential Recommendation [51.25461871988366]
本稿では,事前学習言語モデルと知識蒸留に基づく逐次推薦アルゴリズムを提案する。
提案アルゴリズムは,推薦精度を高め,タイムリーな推薦サービスを提供する。
論文 参考訳(メタデータ) (2024-09-23T08:39:07Z) - How to Diversify any Personalized Recommender? A User-centric Pre-processing approach [0.0]
推薦性能を維持しつつ,Top-Nレコメンデーションの多様性を向上させるための新しいアプローチを提案する。
当社のアプローチでは,ユーザを幅広いコンテンツカテゴリやトピックに公開するための,ユーザ中心の事前処理戦略を採用しています。
論文 参考訳(メタデータ) (2024-05-03T15:02:55Z) - A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation [77.42486522565295]
我々は、パーソナライズされたビデオとコメントのレコメンデーションを共同で行うLSVCRと呼ばれる新しいレコメンデーション手法を提案する。
提案手法は,逐次レコメンデーション(SR)モデルと補足型大規模言語モデル(LLM)レコメンデーションという2つの重要なコンポーネントから構成される。
特に、コメント視聴時間の4.13%が大幅に向上した。
論文 参考訳(メタデータ) (2024-03-20T13:14:29Z) - Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Understanding or Manipulation: Rethinking Online Performance Gains of
Modern Recommender Systems [38.75457258877731]
本稿では,推薦アルゴリズムの操作度をベンチマークするフレームワークを提案する。
オンラインクリックスルー率が高いことは、必ずしもユーザーの初期嗜好をよりよく理解するという意味ではない。
我々は,制約付きユーザ嗜好操作による最適化問題として,将来のレコメンデーションアルゴリズムの研究を取り扱うべきであることを主張する。
論文 参考訳(メタデータ) (2022-10-11T17:56:55Z) - Two-Stage Neural Contextual Bandits for Personalised News Recommendation [50.3750507789989]
既存のパーソナライズされたニュースレコメンデーション手法は、ユーザの興味を搾取することに集中し、レコメンデーションにおける探索を無視する。
我々は、エクスプロイトと探索のトレードオフに対処する文脈的包括的レコメンデーション戦略に基づいて構築する。
我々はユーザとニュースにディープラーニング表現を使用し、ニューラルアッパー信頼境界(UCB)ポリシーを一般化し、加法的 UCB と双線形 UCB を一般化する。
論文 参考訳(メタデータ) (2022-06-26T12:07:56Z) - Constrained Reinforcement Learning for Short Video Recommendation [18.492477839791274]
ソーシャルメディアプラットフォーム上のショートビデオは、レコメンデーターシステムの最適化に新たな課題をもたらす。
アクター・クリティカルな枠組みに基づく2段階強化学習手法を提案する。
当社のアプローチは,ユーザエクスペリエンスを最適化するために,運用システムで完全にローンチされています。
論文 参考訳(メタデータ) (2022-05-26T09:36:20Z) - FEBR: Expert-Based Recommendation Framework for beneficial and
personalized content [77.86290991564829]
推奨コンテンツの質を評価するための見習い学習フレームワークであるFEBR(Expert-Based Recommendation Framework)を提案する。
このフレームワークは、推奨評価環境において専門家(信頼できると仮定される)の実証された軌跡を利用して、未知のユーティリティ機能を回復する。
ユーザ関心シミュレーション環境(RecSim)によるソリューションの性能評価を行う。
論文 参考訳(メタデータ) (2021-07-17T18:21:31Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
実験による推薦システムに対する事前学習の利点を示す。
事前学習を伴うレコメンデータシステムの今後の研究に向けて,いくつかの将来的な方向性について論じる。
論文 参考訳(メタデータ) (2020-09-19T13:06:27Z) - Towards Comprehensive Recommender Systems: Time-Aware
UnifiedcRecommendations Based on Listwise Ranking of Implicit Cross-Network
Data [33.17802459749589]
我々は,コールドスタートとデータ空間の問題を軽減するために,新しい深層学習に基づく統合型クロスネットワークソリューションを提案する。
提案手法は精度,ノベルティ,多様性の点で優れていることを示す。
人気の高いMovieLensデータセットを用いて行った実験から,提案手法が既存の最先端ランキング技術より優れていることが示唆された。
論文 参考訳(メタデータ) (2020-08-25T08:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。