Quantum Information Transfer between a Two-Level and a Four-Level
Quantum System
- URL: http://arxiv.org/abs/2009.09421v4
- Date: Mon, 21 Feb 2022 12:26:37 GMT
- Title: Quantum Information Transfer between a Two-Level and a Four-Level
Quantum System
- Authors: Tianfeng Feng, Qiao Xu, Linxiang Zhou, Maolin Luo, Wuhong Zhang,
Xiaoqi Zhou
- Abstract summary: We experimentally demonstrate a scheme for quantum information transfer between quantum objects of different dimensions.
The fidelities of the quantum information transfer range from 0.700 to 0.917, all above the classical limit of 2/3.
Our work sheds light on a new direction for quantum information transfer and demonstrates our ability to implement entangling operations beyond two-level quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum mechanics provides a disembodied way to transfer quantum information
from one quantum object to another. In theory, this quantum information
transfer can occur between quantum objects of any dimension, yet the reported
experiments of quantum information transfer to date have mainly focused on the
cases where the quantum objects have the same dimension. Here we theoretically
propose and experimentally demonstrate a scheme for quantum information
transfer between quantum objects of different dimensions.By using an optical
qubit-ququart entangling gate, we observe the transfer of quantum information
between two photons with different dimensions, including the flow of quantum
information from a four-dimensional photon to a two-dimensional photon and vice
versa.The fidelities of the quantum information transfer range from 0.700 to
0.917, all above the classical limit of 2/3. Our work sheds light on a new
direction for quantum information transfer and demonstrates our ability to
implement entangling operations beyond two-level quantum systems.
Related papers
- Quantum state transfer between superconducting cavities via exchange-free interactions [20.561557006177914]
We propose and experimentally demonstrate a novel protocol for transferring quantum states between superconducting cavities.
This approach resembles quantum teleportation, where quantum information is transferred between different nodes without directly transmitting carrier photons.
We experimentally realize coherent and bidirectional transfer of arbitrary quantum states, including bosonic quantum error correction codes.
arXiv Detail & Related papers (2024-08-26T07:57:39Z) - Experimental realization of universal quantum gates and six-qubit state
using photonic quantum walk [2.331828779757202]
We report the experimental realize of universal set of quantum gates using photonic quantum walk.
We encode multiple qubits using polarization and paths degree of freedom for photon and demonstrate realization of universal set of gates with 100% success probability.
This work marks a significant progress towards using photonic quantum walk for quantum computing.
arXiv Detail & Related papers (2024-03-11T12:32:22Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - State Transfer and Entanglement between Two- and Four-Level Atoms in A
Cavity [0.4724825031148412]
We propose a scheme to transfer quantum information from multiple atomic qubits to a single qudit and vice versa in an optical cavity.
With the qubit-qudit interaction, our scheme can transfer quantum states efficiently and measurement-independently.
arXiv Detail & Related papers (2023-02-22T03:16:54Z) - Experimental realization of a three-photon asymmetric maximally
entangled state and its application to quantum teleportation [0.0]
We have experimentally prepared a special high-dimensional entangled state, the so-called three-photon asymmetric maximally entangled state.
We have also implemented a proof-of-principle quantum teleportation experiment, realizing the transfer of quantum information from two qubits to a single ququart.
arXiv Detail & Related papers (2022-12-01T14:52:16Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Impacts of Noise and Structure on Quantum Information Encoded in a
Quantum Memory [0.6332429219530602]
We study the correlation of the structure of quantum information with physical noise models of various possible quantum memory implementations.
Our findings point to simple, experimentally relevant formulas for the relative lifetimes of quantum information in different quantum memories.
arXiv Detail & Related papers (2020-11-26T06:12:24Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.