EEG Channel Interpolation Using Deep Encoder-decoder Netwoks
- URL: http://arxiv.org/abs/2009.12244v2
- Date: Thu, 3 Dec 2020 23:16:12 GMT
- Title: EEG Channel Interpolation Using Deep Encoder-decoder Netwoks
- Authors: Sari Saba-Sadiya, Tuka Alhanai, Taosheng Liu, Mohammad M. Ghassemi
- Abstract summary: "Pop" artifacts originate from the spontaneous loss of connectivity between a surface and an electrode.
EEG uses a dense array of electrodes, hence "popped" segments are among the most pervasive type of artifact seen during the collection of EEG data.
In this paper we frame the brain problem as a self-learning task using a deep encoder-decoder network.
- Score: 6.420508750179696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrode "pop" artifacts originate from the spontaneous loss of connectivity
between a surface and an electrode. Electroencephalography (EEG) uses a dense
array of electrodes, hence "popped" segments are among the most pervasive type
of artifact seen during the collection of EEG data. In many cases, the
continuity of EEG data is critical for downstream applications (e.g. brain
machine interface) and requires that popped segments be accurately
interpolated. In this paper we frame the interpolation problem as a
self-learning task using a deep encoder-decoder network. We compare our
approach against contemporary interpolation methods on a publicly available EEG
data set. Our approach exhibited a minimum of ~15% improvement over
contemporary approaches when tested on subjects and tasks not used during model
training. We demonstrate how our model's performance can be enhanced further on
novel subjects and tasks using transfer learning. All code and data associated
with this study is open-source to enable ease of extension and practical use.
To our knowledge, this work is the first solution to the EEG interpolation
problem that uses deep learning.
Related papers
- How Homogenizing the Channel-wise Magnitude Can Enhance EEG Classification Model? [4.0871083166108395]
We propose a simple yet effective approach for EEG data pre-processing.
Our method first transforms the EEG data into an encoded image by an Inverted Channel-wise Magnitude Homogenization.
By doing so, we can improve the EEG learning process efficiently without using a huge Deep Learning network.
arXiv Detail & Related papers (2024-07-19T09:11:56Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Deep learning applied to EEG data with different montages using spatial
attention [0.0]
We explore using spatial attention applied to EEG electrode coordinates to perform channel harmonization of raw EEG data.
We show that a deep learning model trained on data using different channel montages performs significantly better than deep learning models trained on fixed 23- and 128-channel data montages.
arXiv Detail & Related papers (2023-10-16T16:17:33Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
We present EEG-BBNet, a hybrid network which integrates convolutional neural networks (CNN) with graph convolutional neural networks (GCNN)
Our models outperform all baselines in the event-related potential (ERP) task with an average correct recognition rates up to 99.26% using intra-session data.
arXiv Detail & Related papers (2022-08-17T10:18:22Z) - Exploiting Multiple EEG Data Domains with Adversarial Learning [20.878816519635304]
We propose an adversarial inference approach to learn data-source invariant representations in this context.
We unify EEG recordings from different source domains (i.e., emotion recognition SEED, SEED-IV, DEAP, DREAMER)
arXiv Detail & Related papers (2022-04-16T11:09:20Z) - Transformer-based Spatial-Temporal Feature Learning for EEG Decoding [4.8276709243429]
We propose a novel EEG decoding method that mainly relies on the attention mechanism.
We have reached the level of the state-of-the-art in multi-classification of EEG, with fewer parameters.
It has good potential to promote the practicality of brain-computer interface (BCI)
arXiv Detail & Related papers (2021-06-11T00:48:18Z) - Robust learning from corrupted EEG with dynamic spatial filtering [68.82260713085522]
Building machine learning models using EEG recorded outside of the laboratory requires robust methods to noisy data and randomly missing channels.
We propose dynamic spatial filtering (DSF), a multi-head attention module that can be plugged in before the first layer of a neural network.
We tested DSF on public EEG data encompassing 4,000 recordings with simulated channel corruption and on a private dataset of 100 at-home recordings of mobile EEG with natural corruption.
arXiv Detail & Related papers (2021-05-27T02:33:16Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.