論文の概要: Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models
- arxiv url: http://arxiv.org/abs/2404.19713v2
- Date: Mon, 6 May 2024 17:58:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 20:39:25.979743
- Title: Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models
- Title(参考訳): 半構造化データと大規模言語モデルの統合による高品質医療シミュレーションシナリオの自動生成
- Authors: Scott Sumpter,
- Abstract要約: 本研究では,半構造化データとLarge Language Models(LLMs)を統合することにより,医学教育の変革的枠組みを導入する。
提案手法はAIを用いて、特定の教育目的に合わせて、詳細な、臨床的に関係のあるシナリオを効率的に生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study introduces a transformative framework for medical education by integrating semi-structured data with Large Language Models (LLMs), primarily OpenAIs ChatGPT3.5, to automate the creation of medical simulation scenarios. Traditionally, developing these scenarios was a time-intensive process with limited flexibility to meet diverse educational needs. The proposed approach utilizes AI to efficiently generate detailed, clinically relevant scenarios that are tailored to specific educational objectives. This innovation has significantly reduced the time and resources required for scenario development, allowing for a broader variety of simulations. Preliminary feedback from educators and learners has shown enhanced engagement and improved knowledge acquisition, confirming the effectiveness of this AI-enhanced methodology in simulation-based learning. The integration of structured data with LLMs not only streamlines the creation process but also offers a scalable, dynamic solution that could revolutionize medical training, highlighting the critical role of AI in advancing educational outcomes and patient care standards.
- Abstract(参考訳): 本研究では,医学シミュレーションシナリオの作成を自動化するために,半構造化データと大規模言語モデル(LLM)を統合することにより,医学教育の変革的枠組みを提案する。
伝統的に、これらのシナリオの開発は、様々な教育的ニーズを満たすための柔軟性が制限された、時間を要するプロセスであった。
提案手法はAIを用いて、特定の教育目的に合わせて、詳細な、臨床的に関係のあるシナリオを効率的に生成する。
この革新はシナリオ開発に必要な時間とリソースを大幅に削減し、より広範なシミュレーションを可能にした。
教育者や学習者からの予備的なフィードバックは、エンゲージメントの向上と知識獲得の改善を示し、シミュレーションベースの学習におけるこのAI強化手法の有効性を確認している。
構造化されたデータとLLMの統合は、作成プロセスの合理化だけでなく、医療訓練に革命をもたらす、スケーラブルでダイナミックなソリューションも提供します。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
本研究では、拡散モデルと強化学習を統合することにより、脳波(EEG)信号の合成に革新的なアプローチを導入する。
提案手法は, 時間的・スペクトル的特徴の詳細な脳波信号の生成を促進させ, 合成データセットの信頼性と多様性を向上する。
論文 参考訳(メタデータ) (2024-09-14T07:22:31Z) - Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns [0.0]
本研究では,ハイブリッドAIシステムの設計パターンとその臨床的意思決定における有効性について分析する。
Boxologyの構造化されたモジュール型アポラチは、ハイブリッドAIシステムの開発と分析において、大きなアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-08-05T12:53:04Z) - GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
本稿では,Large Language Models(LLMs)を利用した名前付きエンティティ認識(NER)アプローチであるGAMedXを紹介する。
この方法論は、NERのためのオープンソースのLCMを統合し、特殊な医学用語の複雑さをナビゲートするために、連鎖プロンプトとピダンティックスキーマを構造化出力に利用している。
その結果, 評価データセットの1つに対して, 98%の精度でROUGE F1の有意なスコアが得られた。
論文 参考訳(メタデータ) (2024-05-31T02:53:22Z) - WisPerMed at "Discharge Me!": Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV [0.38084074204911494]
本研究は, アウトレット・サマリーの「Brief Hospital Course」と「Discharge Instructions」を自動生成するために, 最先端の言語モデルを活用することを目的としている。
医療施設において, 自動化がドキュメンテーションの精度を向上し, クリニックのバーンアウトを緩和し, 運用効率を向上させる方法について検討した。
論文 参考訳(メタデータ) (2024-05-18T10:56:45Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
本稿では,多様な入力モダリティと融合戦略を符号化する最適なモデルアーキテクチャを自動検索する,AutoFMという新しいニューラルネットワーク探索フレームワークを提案する。
我々は実世界のマルチモーダルEHRデータと予測タスクについて徹底的な実験を行い、その結果、我々のフレームワークが既存の最先端手法よりも大幅な性能向上を実現していることを示す。
論文 参考訳(メタデータ) (2024-01-20T15:14:14Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Democratizing Artificial Intelligence in Healthcare: A Study of Model
Development Across Two Institutions Incorporating Transfer Learning [8.043077408518826]
トランスファーラーニング(TL)は、非常に小さなローカルデータセットを使用して、ある機関から完全に訓練されたモデルを他の機関によって微調整することを可能にする。
本稿では,基本的なユースケースを対象としたAIモデル開発におけるTLの課題,方法論,メリットについて述べる。
論文 参考訳(メタデータ) (2020-09-25T21:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。