論文の概要: Metaphor Detection using Deep Contextualized Word Embeddings
- arxiv url: http://arxiv.org/abs/2009.12565v1
- Date: Sat, 26 Sep 2020 11:00:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 08:17:18.563619
- Title: Metaphor Detection using Deep Contextualized Word Embeddings
- Title(参考訳): ディープコンテキスト化単語埋め込みを用いたメタファー検出
- Authors: Shashwat Aggarwal, Ramesh Singh
- Abstract要約: 本稿では, 単語埋め込み, 双方向LSTM, マルチヘッドアテンション機構からなるエンドツーエンド手法を提案する。
本手法では,フレーズの比喩性を検出するために,入力特徴として生のテキストシーケンスのみを必要とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metaphors are ubiquitous in natural language, and their detection plays an
essential role in many natural language processing tasks, such as language
understanding, sentiment analysis, etc. Most existing approaches for metaphor
detection rely on complex, hand-crafted and fine-tuned feature pipelines, which
greatly limit their applicability. In this work, we present an end-to-end
method composed of deep contextualized word embeddings, bidirectional LSTMs and
multi-head attention mechanism to address the task of automatic metaphor
detection. Our method, unlike many other existing approaches, requires only the
raw text sequences as input features to detect the metaphoricity of a phrase.
We compare the performance of our method against the existing baselines on two
benchmark datasets, TroFi, and MOH-X respectively. Experimental evaluations
confirm the effectiveness of our approach.
- Abstract(参考訳): メタファは自然言語においてユビキタスであり、その検出は、言語理解や感情分析など、多くの自然言語処理タスクにおいて重要な役割を果たす。
既存のメタファ検出のアプローチのほとんどは、複雑で手作りで微調整された機能パイプラインに依存しており、適用性を大幅に制限している。
本研究では, 単語の深層埋め込み, 双方向LSTM, マルチヘッドアテンション機構から構成され, 自動メタファ検出の課題に対処するエンド・ツー・エンド方式を提案する。
本手法は, 既存の手法と異なり, フレーズのメタファー性を検出するために, 入力特徴として生のテキスト列のみを必要とする。
提案手法の性能を2つのベンチマークデータセット(trofi,moh-x)のベースラインと比較した。
実験評価の結果,本手法の有効性が確認された。
関連論文リスト
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - ContrastWSD: Enhancing Metaphor Detection with Word Sense Disambiguation Following the Metaphor Identification Procedure [1.03590082373586]
メタファー識別法(MIP)と単語センス曖昧化(WSD)を統合したRoBERTaを用いたメタファメタメタファ検出モデルを提案する。
WSDモデルから派生した単語感覚を利用することで、メタファ検出プロセスを強化し、他の手法より優れる。
我々は,様々なベンチマークデータセットに対するアプローチを評価し,それを強力なベースラインと比較し,メタファ検出の促進効果を示す。
論文 参考訳(メタデータ) (2023-09-06T15:41:38Z) - ESTextSpotter: Towards Better Scene Text Spotting with Explicit Synergy
in Transformer [88.61312640540902]
明示的な構文に基づくテキストスポッティング変換フレームワーク(ESTextSpotter)を紹介する。
本モデルは,1つのデコーダ内におけるテキスト検出と認識のための識別的,インタラクティブな特徴をモデル化することにより,明示的な相乗効果を実現する。
実験結果から,本モデルが従来の最先端手法よりも有意に優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-08-20T03:22:23Z) - Word Sense Induction with Knowledge Distillation from BERT [6.88247391730482]
本稿では、文脈における単語の感覚に注意を払って、事前学習された言語モデル(BERT)から複数の単語感覚を抽出する手法を提案する。
文脈的単語類似性および感覚誘導タスクの実験は、この手法が最先端のマルチセンス埋め込みよりも優れているか、あるいは競合していることを示している。
論文 参考訳(メタデータ) (2023-04-20T21:05:35Z) - Analysis of Joint Speech-Text Embeddings for Semantic Matching [3.6423306784901235]
ペア音声と書き起こし入力の距離を最小化することにより,セマンティックマッチングのために訓練された共同音声テキスト埋め込み空間について検討する。
我々は,事前学習とマルチタスクの両方のシナリオを通じて,音声認識を組み込む方法を拡張した。
論文 参考訳(メタデータ) (2022-04-04T04:50:32Z) - SwinTextSpotter: Scene Text Spotting via Better Synergy between Text
Detection and Text Recognition [73.61592015908353]
本稿では,SwinTextSpotter と呼ばれるシーンテキストスポッティングフレームワークを提案する。
動的頭部を検出器とするトランスを用いて、2つのタスクを新しい認識変換機構で統一する。
この設計は、追加の修正モジュールも文字レベルのアノテーションも必要としない簡潔なフレームワークをもたらす。
論文 参考訳(メタデータ) (2022-03-19T01:14:42Z) - Towards Weakly-Supervised Text Spotting using a Multi-Task Transformer [21.479222207347238]
テキストスポッティングのための変換器ベースのアプローチであるTextTranSpotter(TTS)を紹介する。
TTSは、完全に管理された設定と弱い設定の両方で訓練される。
TextTranSpotterは、完全に教師された方法でトレーニングされ、複数のベンチマークで最先端の結果を表示する。
論文 参考訳(メタデータ) (2022-02-11T08:50:09Z) - Evaluating the Morphosyntactic Well-formedness of Generated Texts [88.20502652494521]
L'AMBRE – テキストのモルフォシンタク的整形性を評価する指標を提案する。
形態的に豊かな言語に翻訳するシステムのダイアクロニックスタディを通じて,機械翻訳作業におけるメトリックの有効性を示す。
論文 参考訳(メタデータ) (2021-03-30T18:02:58Z) - Contextual Modulation for Relation-Level Metaphor Identification [3.2619536457181075]
本稿では,ある文法的関係の関連レベルの比喩表現を識別するための新しいアーキテクチャを提案する。
視覚的推論の研究にインスパイアされた方法論では、我々のアプローチは、深い文脈化された特徴にニューラルネットワークの計算を条件付けすることに基づいている。
提案したアーキテクチャは,ベンチマークデータセット上で最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-12T12:07:02Z) - On Vocabulary Reliance in Scene Text Recognition [79.21737876442253]
ボキャブラリ内の単語を持つ画像に対して、手法は良好に機能するが、ボキャブラリ外の単語を持つ画像にはあまり一般化しない。
私たちはこの現象を「語彙依存」と呼んでいる。
本研究では,2家族のモデルが協調的に学習できるようにするための,シンプルで効果的な相互学習戦略を提案する。
論文 参考訳(メタデータ) (2020-05-08T11:16:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。