Feasible Architecture for Quantum Fully Convolutional Networks
- URL: http://arxiv.org/abs/2110.01771v1
- Date: Tue, 5 Oct 2021 01:06:54 GMT
- Title: Feasible Architecture for Quantum Fully Convolutional Networks
- Authors: Yusui Chen, Wenhao Hu, Xiang Li
- Abstract summary: We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
- Score: 4.849886707973093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fully convolutional networks are robust in performing semantic segmentation,
with many applications from signal processing to computer vision. From the
fundamental principles of variational quantum algorithms, we propose a feasible
pure quantum architecture that can be operated on noisy intermediate-scale
quantum devices. In this work, a parameterized quantum circuit consisting of
three layers, convolutional, pooling, and upsampling, is characterized by
generative one-qubit and two-qubit gates and driven by a classical optimizer.
This architecture supplies a solution for realizing the dynamical programming
on a one-way quantum computer and maximally taking advantage of quantum
computing throughout the calculation. Moreover, our algorithm works on many
physical platforms, and particularly the upsampling layer can use either
conventional qubits or multiple-level systems. Through numerical simulations,
our study represents the successful training of a pure quantum fully
convolutional network and discusses advantages by comparing it with the hybrid
solution.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - Modularized and scalable compilation for quantum program in double
quantum dots [0.0]
We train the Ansatz circuit and exemplarily realize high-fidelity compilation of a series of universal quantum gates for singlet-triplet qubits in semiconductor double quantum dots.
Our work constitutes an important stepping-stone for exploiting the potential of this physical resource for advanced and complicated quantum algorithms.
arXiv Detail & Related papers (2022-11-10T02:32:39Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.