Nonlinear steering criteria for arbitrary two-qubit quantum systems
- URL: http://arxiv.org/abs/2010.00083v1
- Date: Wed, 30 Sep 2020 19:57:37 GMT
- Title: Nonlinear steering criteria for arbitrary two-qubit quantum systems
- Authors: Guo-Zhu Pan, Ming Yang, Hao Yuan, Gang Zhang, and Jun-Long Zhao
- Abstract summary: We present some nonlinear steering criteria applicable for arbitrary two-qubit quantum systems and optimized ones for symmetric quantum states.
Compared with the existing linear steering criterion and entropic criterion, ours can certify more steerable states without selecting measurement settings or correlation weights.
- Score: 16.20946947543463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By employing Pauli measurements, we present some nonlinear steering criteria
applicable for arbitrary two-qubit quantum systems and optimized ones for
symmetric quantum states. These criteria provide sufficient conditions to
witness steering, which can recover the previous elegant results for some
well-known states. Compared with the existing linear steering criterion and
entropic criterion, ours can certify more steerable states without selecting
measurement settings or correlation weights, which can also be used to verify
entanglement as all steerable quantum states are entangled.
Related papers
- Certifying classes of $d$-outcome measurements with quantum steering [49.1574468325115]
We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
arXiv Detail & Related papers (2024-10-27T15:32:53Z) - Classification of joint quantum measurements based on entanglement cost of localization [42.72938925647165]
We propose a systematic classification of joint measurements based on entanglement cost.
We show how to numerically explore higher levels and construct generalizations to higher dimensions and multipartite settings.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Entropic uncertainty relations for multiple measurements assigned with
biased weights [5.878738491295183]
We investigate R'enyi entropic uncertainty relations (EURs) in the scenario where measurements on individual copies of a quantum system are selected with nonuniform probabilities.
We numerically verify that our EURs could be advantageous in practical quantum tasks by optimizing the weights assigned to different measurements.
arXiv Detail & Related papers (2023-09-29T03:50:46Z) - Certification of non-Gaussian Einstein-Podolsky-Rosen Steering [2.9290107337630613]
We present an efficient non-Gaussian steering criterion based on the high-order observables.
We propose a feasible scheme to create multi-component cat states with tunable size.
Our work reveals the fundamental characteristics of non-Gaussianity and quantum correlations.
arXiv Detail & Related papers (2023-08-26T12:57:22Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Detecting Tripartite Steering via Quantum Entanglement [4.750440439910315]
Einstein-Podolsky-Rosen steering is a powerful nonlocal quantum resource in quantum information processing.
We propose effective criteria for tripartite steerability and genuine tripartite steerability of three-qubit quantum states.
arXiv Detail & Related papers (2022-09-15T07:48:50Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Computable steering criterion for bipartite quantum systems [8.812233192854949]
Quantum steering describes the ability of one observer to nonlocally affect the other observer's state through local measurements.
We propose a computable steering criterion that is applicable to bipartite quantum systems of arbitrary dimensions.
arXiv Detail & Related papers (2020-10-02T03:58:28Z) - Experimental demonstration of complementarity relations between quantum
steering criteria [17.30189229503516]
We experimentally verify the complementarity relations between quantum steering criteria by employing two-photon Bell-like states and three Pauli operators.
Our results show that the steering criterion based on skew information of coherence is more stronger in detecting the steerability of quantum states.
arXiv Detail & Related papers (2020-07-22T10:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.