Entropic uncertainty relations for multiple measurements assigned with
biased weights
- URL: http://arxiv.org/abs/2309.16955v2
- Date: Mon, 4 Mar 2024 06:52:16 GMT
- Title: Entropic uncertainty relations for multiple measurements assigned with
biased weights
- Authors: Shan Huang, Hua-Lei Yin, Zeng-Bing Chen, and Shengjun Wu
- Abstract summary: We investigate R'enyi entropic uncertainty relations (EURs) in the scenario where measurements on individual copies of a quantum system are selected with nonuniform probabilities.
We numerically verify that our EURs could be advantageous in practical quantum tasks by optimizing the weights assigned to different measurements.
- Score: 5.878738491295183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The entropic way of formulating Heisenberg's uncertainty principle not only
plays a fundamental role in applications of quantum information theory but also
is essential for manifesting genuine nonclassical features of quantum systems.
In this paper we investigate R\'{e}nyi entropic uncertainty relations (EURs) in
the scenario where measurements on individual copies of a quantum system are
selected with nonuniform probabilities. In contrast with EURs that characterize
an observer's overall lack of information about outcomes with respect to a
collection of measurements, we establish state-dependent lower bounds on the
weighted sum of entropies over multiple measurements. Conventional EURs thus
correspond to the special cases when all weights are equal, and in such cases,
we show our results are generally stronger than previous ones. Moreover, taking
the entropic steering criterion as an example, we numerically verify that our
EURs could be advantageous in practical quantum tasks by optimizing the weights
assigned to different measurements. Importantly, this optimization does not
require quantum resources and is efficiently computable on classical computers.
Related papers
- Compatibility of Quantum Measurements and the Emergence of Classical Objectivity [0.0]
We consider the KDQ distributions describing arbitrary collections of measurements on disjoint components of some generic multipartite system.
We show that the system dynamics ensures that these distributions are classical if and only if the Hamiltonian supports Quantum Darwinism.
arXiv Detail & Related papers (2024-11-16T19:01:30Z) - Entropic uncertainty relations and entanglement detection from quantum
designs [5.928675196115795]
We investigate entropic uncertainty relations and entanglement detection with an emphasis on quantum measurements with design structures.
We derive improved R'enyi entropic uncertainty relations for design-structured measurements.
We obtain criteria for detecting multi-partite entanglement with design-structured measurements.
arXiv Detail & Related papers (2023-12-15T13:11:00Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Informationally complete measures of quantum entanglement [0.0]
We introduce a family of entanglement measures which are given by the complete eigenvalues of the reduced density matrices of the system.
It is demonstrated that such ICEMs can characterize finer and distinguish better the entanglement than existing well-known entanglement measures.
arXiv Detail & Related papers (2022-06-22T19:27:07Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Extremal quantum states [0.41998444721319206]
We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
arXiv Detail & Related papers (2020-10-09T18:00:02Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.