論文の概要: Citation Sentiment Changes Analysis
- arxiv url: http://arxiv.org/abs/2010.00372v1
- Date: Thu, 1 Oct 2020 13:10:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 08:00:52.406688
- Title: Citation Sentiment Changes Analysis
- Title(参考訳): 引用感情変化分析
- Authors: Haixia Liu
- Abstract要約: 引用感情の変化を測定する尺度が導入された。
グローバルな引用感情シーケンスは、発行された時間によって命令された引用論文のコレクションで分析された。
予備的な証拠は、Eddy Dissipation Rate (EDR) が、雑誌の時系列的な影響を分析する可能性を秘めていることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metrics for measuring the citation sentiment changes were introduced.
Citation sentiment changes can be observed from global citation sentiment
sequences (GCSSs). With respect to a cited paper, the citation sentiment
sequences were analysed across a collection of citing papers ordered by the
published time. For analysing GCSSs, Eddy Dissipation Rate (EDR) was adopted,
with the hypothesis that the GCSSs pattern differences can be spotted by EDR
based method. Preliminary evidence showed that EDR based method holds the
potential for analysing a publication's impact in a time series fashion.
- Abstract(参考訳): 引用感情の変化を測定する尺度が導入された。
GCSS(Global citation sentiment sequences)から引用感情の変化が観察できる。
引用した論文に関して,引用感情のシーケンスを,出版時に注文された引用論文のコレクションを通して分析した。
GCSSsの解析にはEDR(Eddy Dissipation Rate)が採用され、GCSSsパターンの差はEDR法で検出できるという仮説が採用された。
予備的な証拠は、edrに基づく手法が出版物の影響を時系列的に分析する可能性を秘めていることを示している。
関連論文リスト
- Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAGは大規模言語モデル(LLM)を強化するために広く採用されている。
分散テキスト生成(ATG)が注目され、RAGにおけるモデルの応答をサポートするための引用を提供する。
本稿では,ReClaim(Refer & Claim)と呼ばれる詳細なATG手法を提案する。
論文 参考訳(メタデータ) (2024-07-01T20:47:47Z) - Towards Fine-Grained Citation Evaluation in Generated Text: A Comparative Analysis of Faithfulness Metrics [22.041561519672456]
大型言語モデル(LLM)は、しばしば「幻覚」として知られる、サポートされていない、または検証できないコンテンツを生成している。
本稿では,3段階のサポートレベル間での引用を識別する上で,メトリクスの有効性を評価するための比較評価フレームワークを提案する。
以上の結果から,全ての評価において一貫した指標が得られず,きめ細かな支援評価の複雑さが明らかとなった。
論文 参考訳(メタデータ) (2024-06-21T15:57:24Z) - ALiiCE: Evaluating Positional Fine-grained Citation Generation [54.19617927314975]
本稿では,微細な引用生成のための最初の自動評価フレームワークであるALiiCEを提案する。
我々のフレームワークはまず、文のクレームを依存性分析によって原子クレームに解析し、次に原子クレームレベルでの引用品質を計算する。
複数大言語モデルの2つの長文QAデータセット上での位置的きめ細かな引用生成性能を評価する。
論文 参考訳(メタデータ) (2024-06-19T09:16:14Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Predicting Scientific Impact Through Diffusion, Conformity, and Contribution Disentanglement [11.684776349325887]
既存のモデルは、引用数推定に静的グラフに依存するのが一般的である。
論文の拡散, コンフォーマル性, コントリビューション値に潜在的影響を分散させる新しいモデルDPPDCCを導入する。
論文 参考訳(メタデータ) (2023-11-15T07:21:11Z) - CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCiteは紙の意義を測定するための新しい方法だ。
これは、従来のマッチングフレームワークを高次元のテキスト埋め込みに適応させる、新しい因果推論手法であるTextMatchに基づいている。
科学専門家が報告した紙衝撃と高い相関性など,各種基準におけるCausalCiteの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-05T23:09:39Z) - End-to-End Page-Level Assessment of Handwritten Text Recognition [69.55992406968495]
HTRシステムは、文書のエンドツーエンドのページレベルの書き起こしに直面している。
標準メトリクスは、現れる可能性のある不整合を考慮していない。
本稿では、転写精度とROの良さを別々に検討する2つの評価法を提案する。
論文 参考訳(メタデータ) (2023-01-14T15:43:07Z) - Predicting Long-Term Citations from Short-Term Linguistic Influence [20.78217545537925]
研究論文の影響の基準尺度は、その引用回数である。
本稿では,タイムスタンプによる文書収集における言語的影響の定量化手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T22:03:26Z) - Deep Graph Learning for Anomalous Citation Detection [55.81334139806342]
本稿では,新たな深層グラフ学習モデルであるGLAD(Graph Learning for Anomaly Detection)を提案する。
GLADフレームワーク内ではCPU(Citation PUrpose)と呼ばれるアルゴリズムが提案され,引用テキストに基づく引用の目的が明らかになった。
論文 参考訳(メタデータ) (2022-02-23T09:05:28Z) - How are journals cited? characterizing journal citations by type of
citation [0.0]
本稿では,引用関数に基づく引用の統計的特徴付けに関する最初の結果を示す。
また,雑誌が受ける支持率と論争の比率を,品質の潜在的指標として特徴づける最初の結果も提示する。
論文 参考訳(メタデータ) (2021-02-22T14:15:50Z) - Learning Neural Textual Representations for Citation Recommendation [7.227232362460348]
サブモジュラースコアリング機能において,シームズとトリプルトネットワークを併用した文書(センテンス-BERT)の深部表現を用いた引用推薦手法を提案する。
我々の知る限りでは、これは引用推薦のタスクに対して、ディープ表現とサブモジュラー選択を組み合わせるための最初のアプローチである。
論文 参考訳(メタデータ) (2020-07-08T12:38:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。