論文の概要: Ray-based classification framework for high-dimensional data
- arxiv url: http://arxiv.org/abs/2010.00500v2
- Date: Sat, 26 Feb 2022 15:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 07:07:49.807542
- Title: Ray-based classification framework for high-dimensional data
- Title(参考訳): 高次元データのレイベース分類フレームワーク
- Authors: Justyna P. Zwolak, Sandesh S. Kalantre, Thomas McJunkin, Brian J.
Weber, Jacob M. Taylor
- Abstract要約: 本稿では,1次元表現の最小限の集合であるEmphrayを用いたディープニューラルネットワーク(DNN)分類フレームワークを提案する。
レイベース分類器の性能は,低次元システムにおける従来の2次元画像と同等であるが,データ取得コストは大幅に削減されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While classification of arbitrary structures in high dimensions may require
complete quantitative information, for simple geometrical structures,
low-dimensional qualitative information about the boundaries defining the
structures can suffice. Rather than using dense, multi-dimensional data, we
propose a deep neural network (DNN) classification framework that utilizes a
minimal collection of one-dimensional representations, called \emph{rays}, to
construct the "fingerprint" of the structure(s) based on substantially reduced
information. We empirically study this framework using a synthetic dataset of
double and triple quantum dot devices and apply it to the classification
problem of identifying the device state. We show that the performance of the
ray-based classifier is already on par with traditional 2D images for low
dimensional systems, while significantly cutting down the data acquisition
cost.
- Abstract(参考訳): 高次元の任意の構造の分類には完全な量的情報が必要であるが、単純な幾何学的構造の場合、構造を定義する境界に関する低次元の質的情報は十分である。
そこで我々は,高密度な多次元データではなく,1次元表現の最小限の集合である 'emph{rays} を利用したディープニューラルネットワーク (DNN) 分類フレームワークを提案し,構造体の「フィンガープリント」を構築する。
本研究では,2重および3重の量子ドットデバイスの合成データセットを用いて,このフレームワークを実験的に研究し,デバイス状態を識別する分類問題に適用する。
レイベース分類器の性能は,低次元システムにおける従来の2次元画像と同等であるが,データ取得コストは大幅に削減されている。
関連論文リスト
- Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - Learning Structure Aware Deep Spectral Embedding [11.509692423756448]
本稿では, スペクトル埋込み損失と構造保存損失を組み合わせ, 深層スペクトルの埋込みを考慮した新しい構造解析手法を提案する。
両タイプの情報を同時に符号化し,構造認識型スペクトル埋め込みを生成するディープニューラルネットワークアーキテクチャを提案する。
提案アルゴリズムは,公開されている6つの実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-05-14T18:18:05Z) - A geometric framework for outlier detection in high-dimensional data [0.0]
異常検出はデータ分析において重要な課題である。
データセットのメトリック構造を利用するフレームワークを提供する。
この構造を利用することで,高次元データにおける外部観測の検出が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-07-01T12:07:51Z) - A Topology-Attention ConvLSTM Network and Its Application to EM Images [11.081936935096873]
本稿では3次元画像分割のための新しいTopologyAttention ConvLSTM Network(TACNet)を提案する。
具体的には,2次元画像スライスをスタックとして3次元画像を処理するSTA(Spatial Topology-Attention)モジュールを提案する。
スライス間でトポロジクリティカルな情報を効果的に伝達するために,Iterative-Topology Attention (ITA)モジュールを提案する。
論文 参考訳(メタデータ) (2022-02-07T01:33:01Z) - Joint Geometric and Topological Analysis of Hierarchical Datasets [7.098759778181621]
本稿では,複数の階層的データセットに整理された高次元データに注目する。
この研究の主な新規性は、トポロジカルデータ分析と幾何多様体学習という、2つの強力なデータ分析アプローチの組み合わせにある。
本手法は, 最新手法と比較して優れた分類結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-04-03T13:02:00Z) - A Local Similarity-Preserving Framework for Nonlinear Dimensionality
Reduction with Neural Networks [56.068488417457935]
本稿では,Vec2vecという新しい局所非線形手法を提案する。
ニューラルネットワークを訓練するために、マトリックスの近傍類似度グラフを構築し、データポイントのコンテキストを定義します。
8つの実データセットにおけるデータ分類とクラスタリングの実験により、Vec2vecは統計仮説テストにおける古典的な次元削減法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-03-10T23:10:47Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Fine-Grained 3D Shape Classification with Hierarchical Part-View
Attentions [70.0171362989609]
本稿では,FG3D-Netと呼ばれる新しい3次元形状分類手法を提案する。
詳細な3次元形状データセットに基づく結果から,本手法が他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-05-26T06:53:19Z) - Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks [2.454342521577328]
畳み込みニューラルネットワーク(CNN)を中心に構築された(二段階)アプローチを提案する。
第1段階では,提案手法はMask RCNNモデルを用いて,深度シーンにおける超クワッドリックな構造を同定する。
我々は、少数の解釈可能なパラメータを持つ複雑な構造を記述することができる。
論文 参考訳(メタデータ) (2020-01-28T18:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。