論文の概要: EigenGame: PCA as a Nash Equilibrium
- arxiv url: http://arxiv.org/abs/2010.00554v2
- Date: Tue, 16 Mar 2021 20:43:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 07:36:46.811373
- Title: EigenGame: PCA as a Nash Equilibrium
- Title(参考訳): EigenGame: ナッシュ平衡としてのPCA
- Authors: Ian Gemp, Brian McWilliams, Claire Vernade, Thore Graepel
- Abstract要約: 本稿では,主成分分析(PCA)を競争ゲームとして新たな視点を示す。
このPCAゲームの性質と勾配に基づく更新の挙動を解析する。
大規模画像データセットとニューラルネットワークアクティベーションの実験により,アルゴリズムのスケーラビリティを実証する。
- 参考スコア(独自算出の注目度): 21.548912902011054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel view on principal component analysis (PCA) as a
competitive game in which each approximate eigenvector is controlled by a
player whose goal is to maximize their own utility function. We analyze the
properties of this PCA game and the behavior of its gradient based updates. The
resulting algorithm -- which combines elements from Oja's rule with a
generalized Gram-Schmidt orthogonalization -- is naturally decentralized and
hence parallelizable through message passing. We demonstrate the scalability of
the algorithm with experiments on large image datasets and neural network
activations. We discuss how this new view of PCA as a differentiable game can
lead to further algorithmic developments and insights.
- Abstract(参考訳): 本稿では,主成分分析(pca)を,各近似固有ベクトルを自効機能を最大化しようとするプレイヤーが制御する競争ゲームとして,新たな視点を提案する。
このPCAゲームの性質と勾配に基づく更新の挙動を解析する。
結果として得られるアルゴリズムは、Ojaの規則から一般化したGram-Schmidt直交化を組み合わせ、自然に分散化され、メッセージパッシングによって並列化可能である。
大規模画像データセットとニューラルネットワークアクティベーションの実験により,アルゴリズムのスケーラビリティを実証する。
我々は,PCAを差別化可能なゲームとして捉えた新たな視点が,さらなるアルゴリズム開発や洞察につながるかについて議論する。
関連論文リスト
- Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - Deciphering 'What' and 'Where' Visual Pathways from Spectral Clustering of Layer-Distributed Neural Representations [15.59251297818324]
本稿では,ニューラルネットワークのアクティベーションに含まれる情報をグループ化する手法を提案する。
すべてのレイヤの機能を利用して、モデルのどの部分が関連する情報を含んでいるのかを推測する必要をなくします。
論文 参考訳(メタデータ) (2023-12-11T01:20:34Z) - An online algorithm for contrastive Principal Component Analysis [9.090031210111919]
我々は、cPCA*のオンラインアルゴリズムを導き、局所的な学習規則でニューラルネットワークにマップできることを示し、エネルギー効率の良いニューロモルフィックハードウェアで実装できる可能性がある。
実際のデータセット上でのオンラインアルゴリズムの性能を評価し、元の定式化との相違点と類似点を強調した。
論文 参考訳(メタデータ) (2022-11-14T19:48:48Z) - Representation Learning for General-sum Low-rank Markov Games [63.119870889883224]
非線形関数近似を用いたマルチエージェント汎用マルコフゲームについて検討する。
遷移行列が未知の非線形表現の上に隠れた低ランク構造を持つ低ランクマルコフゲームに焦点を当てる。
論文 参考訳(メタデータ) (2022-10-30T22:58:22Z) - Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams) [8.430851504111585]
本稿では,共有メモリ並列性を利用した効率的な反復アルゴリズムと,適合エネルギー勾配の解析式を導入する。
我々は,2つの典型的なPCAアプリケーションを統合することで,コントリビューションの有用性を示す。
MT-PGAベースの最初の2方向を利用して2次元レイアウトを生成する次元削減フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-22T09:17:22Z) - Personalized PCA: Decoupling Shared and Unique Features [4.976703689624386]
異種データセットから共有特徴とユニークな特徴を分離するパーソナライズされたPCA(PerPCA)を提案する。
穏やかな条件下では、一意的特徴と共有的特徴の両方を制約付き最適化問題によって識別し、復元できることが示される。
異種データセットから共有とユニークな機能を分離するための体系的なアプローチとして、PerPCAは、ビデオセグメンテーション、トピック抽出、フィーチャークラスタリングなど、いくつかのタスクにおけるアプリケーションを見つける。
論文 参考訳(メタデータ) (2022-07-17T00:09:47Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Priming PCA with EigenGame [0.0]
我々は最近提案されたEigenGameアルゴリズムの拡張である Primed-PCA を紹介した。
我々のアルゴリズムは、まずEigenGameを実行し、主成分の近似を取得し、次にその部分空間に正確なPCAを適用する。
実験では,元のEigenGame論文のデータセット上で,5~25因子による収束速度の向上を実現した。
論文 参考訳(メタデータ) (2021-09-08T15:16:53Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Eigen Analysis of Self-Attention and its Reconstruction from Partial
Computation [58.80806716024701]
ドット積に基づく自己注意を用いて計算した注意点のグローバルな構造について検討する。
注意点の変動の大部分は低次元固有空間にあることがわかった。
トークンペアの部分的な部分集合に対してのみスコアを計算し、それを用いて残りのペアのスコアを推定する。
論文 参考訳(メタデータ) (2021-06-16T14:38:42Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。