論文の概要: Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
- arxiv url: http://arxiv.org/abs/2207.10960v1
- Date: Fri, 22 Jul 2022 09:17:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 12:50:27.798409
- Title: Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
- Title(参考訳): マージツリー(および永続化図)の主測地線解析
- Authors: Mathieu Pont, Jules Vidal and Julien Tierny
- Abstract要約: 本稿では,共有メモリ並列性を利用した効率的な反復アルゴリズムと,適合エネルギー勾配の解析式を導入する。
我々は,2つの典型的なPCAアプリケーションを統合することで,コントリビューションの有用性を示す。
MT-PGAベースの最初の2方向を利用して2次元レイアウトを生成する次元削減フレームワークを提案する。
- 参考スコア(独自算出の注目度): 8.430851504111585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a computational framework for the Principal Geodesic
Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated
Principal Component Analysis (PCA) framework [87] to the Wasserstein metric
space of merge trees [92]. We formulate MT-PGA computation as a constrained
optimization problem, aiming at adjusting a basis of orthogonal geodesic axes,
while minimizing a fitting energy. We introduce an efficient, iterative
algorithm which exploits shared-memory parallelism, as well as an analytic
expression of the fitting energy gradient, to ensure fast iterations. Our
approach also trivially extends to extremum persistence diagrams. Extensive
experiments on public ensembles demonstrate the efficiency of our approach -
with MT-PGA computations in the orders of minutes for the largest examples. We
show the utility of our contributions by extending to merge trees two typical
PCA applications. First, we apply MT-PGA to data reduction and reliably
compress merge trees by concisely representing them by their first coordinates
in the MT-PGA basis. Second, we present a dimensionality reduction framework
exploiting the first two directions of the MT-PGA basis to generate
two-dimensional layouts of the ensemble. We augment these layouts with
persistence correlation views, enabling global and local visual inspections of
the feature variability in the ensemble. In both applications, quantitative
experiments assess the relevance of our framework. Finally, we provide a
lightweight C++ implementation that can be used to reproduce our results.
- Abstract(参考訳): 本稿では,主成分分析(pca)フレームワーク [87] をマージ木のワッサースタイン計量空間 [92] に適用したマージ木の主測地線解析(mt-pga)のための計算枠組みを提案する。
MT-PGA計算を制約付き最適化問題として定式化し、直交測地線軸の基底の調整を目的とした。
我々は,共有メモリ並列性を利用する効率的な反復アルゴリズムと,エネルギー勾配を適合させる解析式を導入し,高速な反復を保証する。
私たちのアプローチは、極端に永続的な図にも簡単に拡張できます。
公開アンサンブルに関する大規模な実験は、MT-PGA計算によるアプローチの効率性を示す。
我々は,2つの典型的なPCAアプリケーションを統合することで,コントリビューションの有用性を示す。
まず、MT-PGAをデータ還元に適用し、MT-PGAベースの最初の座標でそれらを簡潔に表現することでマージ木を確実に圧縮する。
第2に,MT-PGAベースの最初の2方向を利用してアンサンブルの2次元レイアウトを生成する次元削減フレームワークを提案する。
これらのレイアウトをパーシステンス相関ビューで拡張し、アンサンブルにおける特徴変動のグローバルおよびローカルな視覚的インスペクションを可能にする。
どちらのアプリケーションでも、定量的実験は我々のフレームワークの関連性を評価する。
最後に、結果の再現に使用できる軽量なC++実装を提供します。
関連論文リスト
- Graph Vertex Embeddings: Distance, Regularization and Community Detection [0.0]
グラフ埋め込みは、低次元空間における複雑なネットワーク構造を表現する強力なツールとして登場した。
異なる頂点間の位相的距離を忠実に捉えるフレキシブル距離関数の族を示す。
ベンチマークデータセットのホスト上でコミュニティ検出を行うことにより,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2024-04-09T09:03:53Z) - Pair then Relation: Pair-Net for Panoptic Scene Graph Generation [54.92476119356985]
Panoptic Scene Graph (PSG) は、ボックスの代わりにパン光学セグメンテーションを使用して、より包括的なシーングラフ表現を作成することを目的としている。
現在のPSGメソッドは性能が限られており、下流のタスクやアプリケーションを妨げる。
Pair then Relation (Pair-Net) - Pair Proposal Network (PPN) を用いて、対象と対象間の疎対関係を学習・フィルタリングする。
論文 参考訳(メタデータ) (2023-07-17T17:58:37Z) - Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams) [5.384630221560809]
本稿では、マージツリーの自動符号化(MT-WAE)のための計算フレームワークを提案する。
ベクトル化されたデータを扱う従来のオートエンコーダとは対照的に,ネットワークの各層における関連計量空間上のマージ木を明示的に操作する。
公開アンサンブルの実験では,MT-WAE計算を平均数分のオーダーで行うことで,アルゴリズムの効率を実証した。
論文 参考訳(メタデータ) (2023-07-05T09:46:52Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
クリックベースのインタラクティブセグメンテーション(IS)は、ユーザインタラクション下で対象オブジェクトを抽出することを目的としている。
現在のディープラーニング(DL)ベースの手法のほとんどは、主にセマンティックセグメンテーションの一般的なパイプラインに従っている。
本稿では,各画像上でガウス過程(GP)に基づく画素単位のバイナリ分類モデルとしてISタスクを定式化することを提案する。
論文 参考訳(メタデータ) (2023-02-28T14:01:01Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
本稿では、局所的な類似性、接続性、グローバル構造を教師なしで表現するグラフSylvester Embedding (GSE)を紹介する。
GSEはシルヴェスター方程式の解を用いて、ネットワーク構造と近傍の近接を1つの表現で捉える。
論文 参考訳(メタデータ) (2022-05-07T04:11:23Z) - Graph-based hierarchical record clustering for unsupervised entity
resolution [0.0]
我々はData Washing Machine (DWM)という最先端の確率的フレームワークを構築している。
グラフベースの階層型2ステップレコードクラスタリング手法(GDWM)を導入し,マッチングしたレコードペアにおいて,まず大きな,接続されたコンポーネントやソフトクラスタを識別する。
その後、発見されたソフトクラスタを階層的な方法でより正確なエンティティクラスタに分割する。
論文 参考訳(メタデータ) (2021-12-12T21:58:07Z) - Wasserstein Distances, Geodesics and Barycenters of Merge Trees [9.149293243237778]
本稿では, マージ木の距離, 測地線, バリセンタを推定するための統一的な計算枠組みを提案する。
我々は, 地磁気学とバリセンターの効率的な計算を可能にするために, マージツリー間のワッサーシュタイン距離という新しい測定基準を導入する。
論文 参考訳(メタデータ) (2021-07-16T09:27:49Z) - DAGs with No Curl: An Efficient DAG Structure Learning Approach [62.885572432958504]
近年のDAG構造学習は連続的な非巡回性制約を伴う制約付き連続最適化問題として定式化されている。
本稿では,DAG空間の重み付き隣接行列を直接モデル化し,学習するための新しい学習フレームワークを提案する。
本手法は, 線形および一般化された構造方程式モデルにおいて, ベースラインDAG構造学習法よりも精度が高いが, 効率がよいことを示す。
論文 参考訳(メタデータ) (2021-06-14T07:11:36Z) - Self-supervised Geometric Perception [96.89966337518854]
自己教師付き幾何知覚(self-supervised geometric perception)は、基底幾何モデルラベルなしで対応マッチングのための特徴記述子を学ぶためのフレームワークである。
また,SGPは,地上トラスラベルを用いて訓練した教師付きオークルよりも同等か優れる最先端性能を達成できることを示す。
論文 参考訳(メタデータ) (2021-03-04T15:34:43Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。