論文の概要: A local geometry of hyperedges in hypergraphs, and its applications to
social networks
- arxiv url: http://arxiv.org/abs/2010.00994v1
- Date: Tue, 29 Sep 2020 21:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 07:20:23.588357
- Title: A local geometry of hyperedges in hypergraphs, and its applications to
social networks
- Title(参考訳): ハイパーグラフにおけるハイパーエッジの局所幾何学とソーシャルネットワークへの応用
- Authors: Dong Quan Ngoc Nguyen and Lin Xing
- Abstract要約: 本稿では,データポイント間の高次関係を捉えることができるハイパーグラフにおけるハイパーッジの新しい局所幾何学を導入する。
また,社会学から得られたデータセットを解析する手法として,ハイパーグラフに最も近い近傍手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many real world datasets arising from social networks, there are hidden
higher order relations among data points which cannot be captured using graph
modeling. It is natural to use a more general notion of hypergraphs to model
such social networks. In this paper, we introduce a new local geometry of
hyperdges in hypergraphs which allows to capture higher order relations among
data points. Furthermore based on this new geometry, we also introduce new
methodology--the nearest neighbors method in hypergraphs--for analyzing
datasets arising from sociology.
- Abstract(参考訳): ソーシャルネットワークから得られた多くの実世界のデータセットでは、グラフモデリングでは取得できないデータポイント間の高次関係が隠されている。
ハイパーグラフのより一般的な概念を使ってそのようなソーシャルネットワークをモデル化するのは自然である。
本稿では,データポイント間の高次関係を捉えることができるハイパーグラフにおけるハイパーッジの新しい局所幾何学を提案する。
さらに,この新しい幾何学に基づいて,超グラフにおける近接近傍法という新しい方法論を導入して,社会学から発生するデータセットの分析を行う。
関連論文リスト
- Geometry Distributions [51.4061133324376]
本稿では,分布として幾何学をモデル化する新しい幾何学的データ表現を提案する。
提案手法では,新しいネットワークアーキテクチャを用いた拡散モデルを用いて表面点分布の学習を行う。
本研究では,多種多様な対象に対して質的かつ定量的に表現を評価し,その有効性を実証した。
論文 参考訳(メタデータ) (2024-11-25T04:06:48Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - Message Passing Neural Networks for Hypergraphs [6.999112784624749]
本稿では,ハイパーグラフ構造データを処理可能なメッセージパッシングに基づく,最初のグラフニューラルネットワークを提案する。
提案モデルでは,ハイパーグラフのためのニューラルネットワークモデルの設計空間が定義され,既存のハイパーグラフモデルが一般化されることを示す。
論文 参考訳(メタデータ) (2022-03-31T12:38:22Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Community Detection in General Hypergraph via Graph Embedding [1.4213973379473654]
本研究では,一般のハイパーグラフネットワーク,均一あるいは非均一なコミュニティ構造を検出する新しい方法を提案する。
提案手法では,非一様ハイパーグラフを均一なマルチハイパーグラフに拡張するヌルを導入し,低次元ベクトル空間にマルチハイパーグラフを埋め込む。
論文 参考訳(メタデータ) (2021-03-28T03:23:03Z) - Learning over Families of Sets -- Hypergraph Representation Learning for
Higher Order Tasks [12.28143554382742]
可変サイズのハイパーエッジの表現を実証的に表現するためのハイパーグラフニューラルネットワークを開発した。
複数の実世界のハイパーグラフデータセットのパフォーマンスを評価し、最新モデルよりも一貫性のある大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-01-19T18:37:50Z) - HyperSAGE: Generalizing Inductive Representation Learning on Hypergraphs [24.737560790401314]
2段階のニューラルメッセージパッシング戦略を用いて、ハイパーグラフを介して情報を正確かつ効率的に伝播する新しいハイパーグラフ学習フレームワークHyperSAGEを提案する。
本稿では,HyperSAGEが代表的ベンチマークデータセット上で最先端のハイパーグラフ学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-09T13:28:06Z) - Community detection, pattern recognition, and hypergraph-based learning:
approaches using metric geometry and persistent homology [1.3477333339913569]
我々は,通常の距離空間構造に類似した新しいトポロジ構造をハイパーグラフデータに導入する。
ハイパーグラフデータの新しいトポロジ的空間構造を用いて,コミュニティ検出問題を研究するためのいくつかのアプローチを提案する。
次に,提案手法を用いて構築したハイプグラフデータにおける符号予測問題について検討する。
論文 参考訳(メタデータ) (2020-09-29T21:20:12Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。