論文の概要: Memory Clustering using Persistent Homology for Multimodality- and
Discontinuity-Sensitive Learning of Optimal Control Warm-starts
- arxiv url: http://arxiv.org/abs/2010.01024v3
- Date: Wed, 24 Mar 2021 14:18:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 02:35:38.557086
- Title: Memory Clustering using Persistent Homology for Multimodality- and
Discontinuity-Sensitive Learning of Optimal Control Warm-starts
- Title(参考訳): 多モード・不連続性学習のための永続ホモロジーを用いたメモリクラスタリング
- Authors: Wolfgang Merkt, Vladimir Ivan, Traiko Dinev, Ioannis Havoutis, Sethu
Vijayakumar
- Abstract要約: シューティング法は非線形最適制御問題の解法として効率的である。
最近の研究は、問題空間のオフライン探索中に生成されたサンプルに基づいてトレーニングされた学習モデルからの最初の推測を提供することに重点を置いている。
本研究では、代数的トポロジーからツールを適用し、解空間の基盤構造に関する情報を抽出する。
- 参考スコア(独自算出の注目度): 24.576214898129823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shooting methods are an efficient approach to solving nonlinear optimal
control problems. As they use local optimization, they exhibit favorable
convergence when initialized with a good warm-start but may not converge at all
if provided with a poor initial guess. Recent work has focused on providing an
initial guess from a learned model trained on samples generated during an
offline exploration of the problem space. However, in practice the solutions
contain discontinuities introduced by system dynamics or the environment.
Additionally, in many cases multiple equally suitable, i.e., multi-modal,
solutions exist to solve a problem. Classic learning approaches smooth across
the boundary of these discontinuities and thus generalize poorly. In this work,
we apply tools from algebraic topology to extract information on the underlying
structure of the solution space. In particular, we introduce a method based on
persistent homology to automatically cluster the dataset of precomputed
solutions to obtain different candidate initial guesses. We then train a
Mixture-of-Experts within each cluster to predict state and control
trajectories to warm-start the optimal control solver and provide a comparison
with modality-agnostic learning. We demonstrate our method on a cart-pole toy
problem and a quadrotor avoiding obstacles, and show that clustering samples
based on inherent structure improves the warm-start quality.
- Abstract(参考訳): シューティング法は非線形最適制御問題の解法として効率的である。
局所最適化を用いると、良いウォームスタートで初期化されるとよい収束を示すが、初期推定が貧弱であれば収束しない可能性がある。
最近の研究は、問題空間のオフライン探索中に生成されたサンプルに基づいてトレーニングされた学習モデルからの最初の推測を提供することに重点を置いている。
しかし、実際には、解にはシステムダイナミクスや環境によって引き起こされる不連続性が含まれている。
さらに、多くの場合、問題を解くのに等しく適した複数の解、すなわちマルチモーダル解が存在する。
古典的な学習アプローチは、これらの不連続の境界をスムーズに越え、その結果、あまり一般化しない。
本研究では,代数的トポロジーのツールを用いて解空間の基底構造に関する情報を抽出する。
特に,事前計算された解のデータセットを自動的にクラスタ化し,異なる候補初期推定を求める永続ホモロジーに基づく手法を提案する。
次に、各クラスタ内でMixture-of-Expertsをトレーニングし、状態と制御軌道を予測し、最適制御ソルバをウォームスタートさせ、モダリティに依存しない学習と比較する。
本手法は, 荷車ポールの玩具問題と障害物回避四重項器について実証し, 固有の構造に基づくクラスタリングサンプルが暖房点品質を向上させることを示す。
関連論文リスト
- Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - Outer Approximation and Super-modular Cuts for Constrained Assortment Optimization under Mixed-Logit Model [6.123324869194196]
混合ロジット顧客選択モデルに基づくアソシエーション最適化問題について検討する。
既存の正確な手法は、主にMILP (mixed-integer linear programming) やCONIC (Second-order cone) の修正に依存している。
我々の研究は、単調に超モジュラーかつ凸であることを示す客観的関数の成分に焦点をあてることによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-07-26T06:27:11Z) - What to Do When Your Discrete Optimization Is the Size of a Neural
Network? [24.546550334179486]
ニューラルネットワークを用いた機械学習アプリケーションは、離散最適化問題を解くことを含む。
離散的な設定で使用される古典的なアプローチは、大きなニューラルネットワークに対してうまくスケールしない。
連続経路(CP)法は,前者およびモンテカルロ法(MC)法を純粋に表現し,後者を表現している。
論文 参考訳(メタデータ) (2024-02-15T21:57:43Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
組合せ最適化(CO)問題はしばしばNPハードであり、正確なアルゴリズムには及ばない。
GFlowNetsは、複合非正規化密度を逐次サンプリングする強力な機械として登場した。
本稿では,異なる問題に対してマルコフ決定プロセス(MDP)を設計し,条件付きGFlowNetを学習して解空間からサンプルを作成することを提案する。
論文 参考訳(メタデータ) (2023-05-26T15:13:09Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Contrastive Losses and Solution Caching for Predict-and-Optimize [19.31153168397003]
ノイズコントラスト法を用いて、サロゲート損失関数の族を動機付ける。
すべての予測と最適化アプローチのボトルネックに対処する。
非常に遅い成長率でさえ、最先端の手法の質に合わせるのに十分であることを示す。
論文 参考訳(メタデータ) (2020-11-10T19:09:12Z) - Physarum Powered Differentiable Linear Programming Layers and
Applications [48.77235931652611]
一般線形プログラミング問題に対する効率的かつ微分可能な解法を提案する。
本稿では,ビデオセグメンテーションタスクとメタラーニングにおける問題解決手法について述べる。
論文 参考訳(メタデータ) (2020-04-30T01:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。