Collaborative Tracking and Capture of Aerial Object using UAVs
- URL: http://arxiv.org/abs/2010.01588v1
- Date: Sun, 4 Oct 2020 14:23:03 GMT
- Title: Collaborative Tracking and Capture of Aerial Object using UAVs
- Authors: Lima Agnel Tony, Shuvrangshu Jana, Varun V P, Vidyadhara B V,
Mohitvishnu S Gadde, Abhishek Kashyap, Rahul Ravichandran, Debasish Ghose
- Abstract summary: This problem is motivated from the challenge 1 of Mohammed Bin Zayed International Robotic Challenge 2020.
The UAVs utilise visual feedback to autonomously detect target, approach it and capture without disturbing the vehicle which carries the target.
- Score: 0.16863755729554883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work details the problem of aerial target capture using multiple UAVs.
This problem is motivated from the challenge 1 of Mohammed Bin Zayed
International Robotic Challenge 2020. The UAVs utilise visual feedback to
autonomously detect target, approach it and capture without disturbing the
vehicle which carries the target. Multi-UAV collaboration improves the
efficiency of the system and increases the chance of capturing the ball
robustly in short span of time. In this paper, the proposed architecture is
validated through simulation in ROS-Gazebo environment and is further
implemented on hardware.
Related papers
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game.
The proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios.
arXiv Detail & Related papers (2024-11-05T10:45:30Z) - UAVDB: Trajectory-Guided Adaptable Bounding Boxes for UAV Detection [0.03464344220266879]
Patch Intensity Convergence (PIC) technique generates high-fidelity bounding boxes for UAV detection without manual labeling.
This technique forms the foundation of UAVDB, a dedicated database designed specifically for UAV detection.
We benchmark UAVDB using state-of-the-art (SOTA) YOLO series detectors, providing a comprehensive performance analysis.
arXiv Detail & Related papers (2024-09-09T13:27:53Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment [17.531224704021273]
This paper focuses on the continuous control of the unmanned aerial vehicle (UAV) based on a deep reinforcement learning method.
We propose a deep reinforcement learning (DRL)-based method combined with human-in-the-loop, which allows the UAV to avoid obstacles automatically during flying.
arXiv Detail & Related papers (2023-04-07T01:44:05Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
We study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user.
We propose a novel multi-agent deep reinforcement learning framework, coined a graph attention exchange network (GAXNet)
GAXNet achieves 6.5x lower latency with the target 0.0000001 error rate, compared to a state-of-the-art baseline framework.
arXiv Detail & Related papers (2021-05-22T12:43:25Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Federated Learning for Cellular-connected UAVs: Radio Mapping and Path
Planning [2.4366811507669124]
In this paper, we minimize the travel time of the UAVs, ensuring that a probabilistic connectivity constraint is satisfied.
Since the UAVs have different missions and fly over different areas, their collected data carry local information on the network's connectivity.
In the first step, the UAVs collaboratively build a global model of the outage probability in the environment.
In the second step, by using the global model obtained in the first step and rapidly-exploring random trees (RRTs), we propose an algorithm to optimize UAVs' paths.
arXiv Detail & Related papers (2020-08-23T14:55:37Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
How to achieve ubiquitous 3D communication coverage for UAVs in the sky is a new challenge.
We propose a new coverage-aware navigation approach, which exploits the UAV's controllable mobility to design its navigation/trajectory.
We propose a new framework called simultaneous navigation and radio mapping (SNARM), where the UAV's signal measurement is used to train the deep Q network.
arXiv Detail & Related papers (2020-03-17T08:16:14Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.