論文の概要: Immigration Document Classification and Automated Response Generation
- arxiv url: http://arxiv.org/abs/2010.01997v1
- Date: Tue, 29 Sep 2020 23:45:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 05:45:18.865898
- Title: Immigration Document Classification and Automated Response Generation
- Title(参考訳): 移民文書の分類と自動応答生成
- Authors: Sourav Mukherjee, Tim Oates, Vince DiMascio, Huguens Jean, Rob Ares,
David Widmark, Jaclyn Harder
- Abstract要約: 我々は、米国労働ビザ請願に不可欠な文書の整理と、米国市民権移民サービス(USCIS)が発行した証拠要求(RFE)への対応について検討する。
機械的作業の負担を軽減するため,提案プロセスの自動化に機械学習手法を適用する。
- 参考スコア(独自算出の注目度): 4.224734287741441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the problem of organizing supporting documents
vital to U.S. work visa petitions, as well as responding to Requests For
Evidence (RFE) issued by the U.S.~Citizenship and Immigration Services (USCIS).
Typically, both processes require a significant amount of repetitive manual
effort. To reduce the burden of mechanical work, we apply machine learning
methods to automate these processes, with humans in the loop to review and edit
output for submission. In particular, we use an ensemble of image and text
classifiers to categorize supporting documents. We also use a text classifier
to automatically identify the types of evidence being requested in an RFE, and
used the identified types in conjunction with response templates and extracted
fields to assemble draft responses. Empirical results suggest that our approach
achieves considerable accuracy while significantly reducing processing time.
- Abstract(参考訳): 本稿では,米国労働ビザ請願に不可欠な文書の整理と,米国市民権移民サービス(USCIS)が発行したRFE(Requests For Evidence)への対応について考察する。
通常、どちらのプロセスもかなりの反復的な手作業を必要とする。
機械的な作業の負担を軽減するために,これらのプロセスを自動化するために機械学習手法を適用する。
特に,画像およびテキスト分類器のアンサンブルを用いて,支援文書の分類を行う。
また、テキスト分類器を使用して、RFEで要求されている証拠のタイプを自動的に識別し、識別された型と応答テンプレート、抽出されたフィールドを併用して、ドラフトレスポンスを組み立てる。
実験結果から,本手法は処理時間を大幅に削減しながら相当な精度が得られることが示唆された。
関連論文リスト
- Validation of Rigorous Requirements Specifications and Document
Automation with the ITLingo RSL Language [0.0]
ITLingoイニシアチブは、技術的文書の厳密さと一貫性を高めるためにRSLという要求仕様言語を導入した。
本稿では、要求検証と文書自動化の分野における既存の研究・ツールについてレビューする。
我々は、カスタマイズされたチェックと、RSL自体で動的に定義された言語規則に基づいて、仕様の検証によりRSLを拡張することを提案する。
論文 参考訳(メタデータ) (2023-12-17T21:39:26Z) - Peek Across: Improving Multi-Document Modeling via Cross-Document
Question-Answering [49.85790367128085]
我々は,事前学習対象に答える新しいクロスドキュメント質問から,汎用的なマルチドキュメントモデルを事前学習する。
この新規なマルチドキュメントQA定式化は、クロステキスト情報関係をよりよく回復させるようモデルに指示する。
分類タスクや要約タスクに焦点を当てた従来のマルチドキュメントモデルとは異なり、事前学習対象の定式化により、短いテキスト生成と長いテキスト生成の両方を含むタスクを実行できる。
論文 参考訳(メタデータ) (2023-05-24T17:48:40Z) - InteractiveIE: Towards Assessing the Strength of Human-AI Collaboration
in Improving the Performance of Information Extraction [48.45550809455558]
文書からテンプレートをベースとした学習情報抽出の性能向上を図るために,対話IE(InteractiveIE)と呼ばれるプロキシをオンザフライで行う方法を提案する。
バイオメディカルおよび法的文書の実験では、トレーニングデータを取得するのが高価であり、AIのみのベースラインよりもInteractiveIEを使用したパフォーマンス改善の奨励的な傾向が明らかにされている。
論文 参考訳(メタデータ) (2023-05-24T02:53:22Z) - Open Domain Multi-document Summarization: A Comprehensive Study of Model
Brittleness under Retrieval [42.73076855699184]
マルチドキュメント要約(MDS)は、一連のトピック関連の文書が入力として提供されると仮定する。
タスクを形式化し、既存のデータセット、レトリバー、要約器を使ってブートストラップすることで、より困難な設定について研究する。
論文 参考訳(メタデータ) (2022-12-20T18:41:38Z) - On Event Individuation for Document-Level Information Extraction [10.051706937866504]
我々は,この課題が事象の偏見に関する厄介な質問に対して決定的な回答を要求することを主張する。
これにより、テンプレートフィリングメトリクスの有用性、タスクのデータセットの品質、学習するモデルの能力に関する懸念が高まります。
論文 参考訳(メタデータ) (2022-12-19T18:30:36Z) - Questions Are All You Need to Train a Dense Passage Retriever [123.13872383489172]
ARTは、ラベル付きトレーニングデータを必要としない高密度検索モデルをトレーニングするための、新しいコーパスレベルのオートエンコーディングアプローチである。
そこで,(1) 入力質問を用いて証拠文書の集合を検索し,(2) 文書を用いて元の質問を再構築する確率を計算する。
論文 参考訳(メタデータ) (2022-06-21T18:16:31Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
本稿では,ジェネレーション方式で証拠を検索する最初のシステムであるGEREを提案する。
FEVERデータセットの実験結果は、GEREが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2022-04-12T03:49:35Z) - Toward Educator-focused Automated Scoring Systems for Reading and
Writing [0.0]
本稿では,データとラベルの可用性,信頼性と拡張性,ドメインスコアリング,プロンプトとソースの多様性,伝達学習といった課題に対処する。
モデルトレーニングコストを増大させることなく、エッセイの長さを重要な特徴として保持する技術を採用している。
論文 参考訳(メタデータ) (2021-12-22T15:44:30Z) - Extracting Procedural Knowledge from Technical Documents [1.0773368566852943]
手続きは、自動化、質問応答、会話の推進のために認知アシスタントが活用できる文書の重要な知識コンポーネントである。
プロダクトマニュアルやユーザガイドといった巨大なドキュメントを解析して,どの部分でプロシージャについて話しているのかを自動的に理解し,それを抽出することは,非常に難しい問題です。
論文 参考訳(メタデータ) (2020-10-20T09:47:52Z) - Mining Implicit Relevance Feedback from User Behavior for Web Question
Answering [92.45607094299181]
本研究は,ユーザ行動と通過関連性との関連性を検討するための最初の研究である。
提案手法は,追加のラベル付きデータを使わずにパスランキングの精度を大幅に向上させる。
実際にこの研究は、グローバルな商用検索エンジンにおけるQAサービスの人為的ラベリングコストを大幅に削減する効果が証明されている。
論文 参考訳(メタデータ) (2020-06-13T07:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。