Scaling up reservoir engineering for error-correcting codes
- URL: http://arxiv.org/abs/2010.02850v1
- Date: Tue, 6 Oct 2020 16:14:13 GMT
- Title: Scaling up reservoir engineering for error-correcting codes
- Authors: Vincent Martin and Alain Sarlette
- Abstract summary: We focus on a proposal for the repetition code that counters bit-flip errors, and how to scale up the network encoding a logical quantum bit.
The challenge has been to devise a network architecture which allows to autonomously correct higher-order errors, while remaining realistic towards experimental realization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Error-correcting codes are usually envisioned to counter errors by operating
unitary corrections depending on the projective measurement results of some
syndrome observables. We here propose a way to use them in a more integrated
way, where the error correction is applied continuously and autonomously by an
engineered environment. We focus on a proposal for the repetition code that
counters bit-flip errors, and how to scale up the network encoding a logical
quantum bit, towards stronger information protection. The challenge has been to
devise a network architecture which allows to autonomously correct higher-order
errors, while remaining realistic towards experimental realization by avoiding
all-to-all or all-to-one coupling.
Related papers
- Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
The original Steane code is not fault-tolerant because the CNOT gates in an encoded block may cause error propagation.
We first propose a fault-tolerant encoding and decoding scheme, which analyzes all possible errors caused by each quantum gate in an error-correction period.
We then provide the fault-tolerant scheme of the universal quantum gate set, including fault-tolerant preparation and verification of ancillary states.
arXiv Detail & Related papers (2024-03-07T07:46:03Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Bounds on Autonomous Quantum Error Correction [3.9119979887528125]
We analyze Markovian autonomous decoders that can be implemented with a wide range of qubit and bosonic error-correcting codes.
For many-body quantum codes, we show that, to achieve error suppression comparable to active error correction, autonomous decoders generally require correction rates that grow with code size.
arXiv Detail & Related papers (2023-08-30T18:00:07Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Segmented Composite Design of Robust Single-Qubit Quantum Gates [0.9487097819140653]
We introduce an error mitigation scheme for robust single-qubit unitary gates based on composite segmented design.
We show that the 3-segmented composite design for the fundamental single-qubits unitary operations reduces the error by an order of magnitude for a realistic distribution of errors.
arXiv Detail & Related papers (2022-12-31T17:00:24Z) - Active Readout Error Mitigation [1.5675763601034223]
We propose a scheme to actively reduce readout errors on a shot-by-shot basis by encoding single qubits, immediately prior to readout, into multi-qubit states.
We analyze the potential of our approach using two types of error-correcting codes and, as a proof of principle, demonstrate an 80% improvement in readout error on the IBMQ Mumbai quantum computer.
arXiv Detail & Related papers (2021-08-27T18:00:00Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.