論文の概要: Towards a Scalable and Distributed Infrastructure for Deep Learning
Applications
- arxiv url: http://arxiv.org/abs/2010.03012v2
- Date: Tue, 20 Apr 2021 00:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-10 08:08:47.420086
- Title: Towards a Scalable and Distributed Infrastructure for Deep Learning
Applications
- Title(参考訳): ディープラーニングアプリケーションのためのスケーラブルで分散インフラストラクチャを目指して
- Authors: Bita Hasheminezhad, Shahrzad Shirzad, Nanmiao Wu, Patrick Diehl,
Hannes Schulz, Hartmut Kaiser
- Abstract要約: Phylanxは生産性を重視した実行ツリーを提供する。
分散ディープラーニングフレームワークにおける欠点を軽減する可能性を持つPhylanxを提案する。
- 参考スコア(独自算出の注目度): 4.4979162962108905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although recent scaling up approaches to training deep neural networks have
proven to be effective, the computational intensity of large and complex
models, as well as the availability of large-scale datasets, require deep
learning frameworks to utilize scaling out techniques. Parallelization
approaches and distribution requirements are not considered in the preliminary
designs of most available distributed deep learning frameworks, and most of
them still are not able to perform effective and efficient fine-grained
inter-node communication. We present Phylanx that has the potential to
alleviate these shortcomings. Phylanx offers a productivity-oriented frontend
where user Python code is translated to a futurized execution tree that can be
executed efficiently on multiple nodes using the C++ standard library for
parallelism and concurrency (HPX), leveraging fine-grained threading and an
active messaging task-based runtime system.
- Abstract(参考訳): ディープニューラルネットワークのトレーニングに対する最近のスケールアップアプローチは有効であることが証明されているが、大規模で複雑なモデルの計算強度と大規模データセットの可用性は、スケーリングアウトテクニックを利用するためのディープラーニングフレームワークを必要としている。
並列化アプローチと分散要件は、ほとんどの利用可能な分散ディープラーニングフレームワークの予備設計では考慮されていない。
これらの欠点を緩和する可能性を持つPhylanxを提示する。
Phylanxは生産性指向のフロントエンドを提供する。ユーザPythonコードが未来的な実行ツリーに変換され、並列性と並列性(HPX)のためのC++標準ライブラリを使用して複数のノードで効率的に実行できる。
関連論文リスト
- Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Partitioning Distributed Compute Jobs with Reinforcement Learning and
Graph Neural Networks [58.720142291102135]
大規模な機械学習モデルは、幅広い分野に進歩をもたらしている。
これらのモデルの多くは、単一のマシンでトレーニングするには大きすぎるため、複数のデバイスに分散する必要がある。
スループットやブロッキングレートといったユーザクリティカルな指標に対して,並列化の最大化が準最適であることを示す。
論文 参考訳(メタデータ) (2023-01-31T17:41:07Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Nebula-I: A General Framework for Collaboratively Training Deep Learning
Models on Low-Bandwidth Cloud Clusters [39.85470606966918]
遠隔ヘテロジニアスクラスタ上でディープラーニングモデルを協調訓練するための一般的なフレームワークであるNebula-Iを導入する。
Nebula-IはPaddlePaddleディープラーニングフレームワークで実装されている。
実験により,提案フレームワークは,良好なNLP性能を維持しつつ,トレーニング効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2022-05-19T11:10:14Z) - OneFlow: Redesign the Distributed Deep Learning Framework from Scratch [17.798586916628174]
OneFlowは、SBP(スプリット、ブロードキャスト、部分値)の抽象化とアクターモデルに基づく、新しい分散トレーニングフレームワークである。
SBPは既存のフレームワークよりも、データ並列処理やモデル並列処理のプログラミングがずっと簡単になります。
OneFlowは、最先端のフレームワーク上に構築された多くの有名なカスタマイズライブラリよりも優れています。
論文 参考訳(メタデータ) (2021-10-28T11:32:14Z) - Parallel Training of Deep Networks with Local Updates [84.30918922367442]
ローカル並列性(Local Parallelism)は、グローバルバックプロパゲーションを切り捨てられたレイヤワイズバックプロパゲーションに置き換えることで、ディープネットワーク内の個々のレイヤのトレーニングを並列化するフレームワークである。
我々は、様々なアーキテクチャセットにわたるビジョンと言語領域の両方で結果を示し、局所的並列性は特に高コンピュートなシステムにおいて有効であることを見出した。
論文 参考訳(メタデータ) (2020-12-07T16:38:45Z) - Benchmarking network fabrics for data distributed training of deep
neural networks [10.067102343753643]
深層モデルの訓練のための大規模な計算要求は、より高速な訓練のための新しい方法の開発を必要としている。
このようなアプローチのひとつに、トレーニングデータを複数の計算ノードに分散する、データ並列アプローチがある。
本稿では,物理ハードウェアの相互接続とネットワーク関連ソフトウェアプリミティブを用いてデータ分散ディープラーニングを実現する効果について検討する。
論文 参考訳(メタデータ) (2020-08-18T17:38:30Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
我々は,PC用の新しい実装設計であるEinsum Networks (EiNets)を提案する。
中心となるのは、E EiNets は単一のモノリシックな einsum-operation に多数の算術演算を組み合わせている。
本稿では,PCにおける予測最大化(EM)の実装を,自動微分を利用した簡易化が可能であることを示す。
論文 参考訳(メタデータ) (2020-04-13T23:09:15Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。