論文の概要: Gradient-based Causal Structure Learning with Normalizing Flow
- arxiv url: http://arxiv.org/abs/2010.03095v1
- Date: Wed, 7 Oct 2020 00:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 23:46:44.330130
- Title: Gradient-based Causal Structure Learning with Normalizing Flow
- Title(参考訳): 正規化フローを用いた勾配に基づく因果構造学習
- Authors: Xiongren Chen
- Abstract要約: そこで本研究では,DAG-NFと呼ばれるスコアベース正規化フロー手法を提案する。
この方法は、特にフローベースの生成ニューラルネットワークにおいて、任意のニューラルネットワークに一般化することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a score-based normalizing flow method called DAG-NF
to learn dependencies of input observation data. Inspired by Grad-CAM in
computer vision, we use jacobian matrix of output on input as causal
relationships and this method can be generalized to any neural networks
especially for flow-based generative neural networks such as Masked
Autoregressive Flow(MAF) and Continuous Normalizing Flow(CNF) which compute the
log likelihood loss and divergence of distribution of input data and target
distribution. This method extends NOTEARS which enforces a important acylicity
constraint on continuous adjacency matrix of graph nodes and significantly
reduce the computational complexity of search space of graph.
- Abstract(参考訳): 本稿では,DAG-NFと呼ばれるスコアベース正規化フロー手法を提案し,入力観測データの依存関係を学習する。
特にMasked Autoregressive Flow(MAF)やContinuous Normalizing Flow(CNF)のようなフローベース生成ニューラルネットワークにおいて,入力データとターゲット分布の対数的損失と分散を計算し,入力に対する出力のジャコビアン行列を因果関係として用いる。
本手法はNOTEARSを拡張し,グラフノードの連続隣接行列に重要な適応性制約を課し,グラフの探索空間の計算複雑性を著しく低減する。
関連論文リスト
- Algorithm-Informed Graph Neural Networks for Leakage Detection and Localization in Water Distribution Networks [6.675805308519987]
漏水は配水ネットワークの効率的かつ持続可能な管理にとって重要な課題である。
近年のアプローチでは、グラフベースのデータ駆動方式が採用されている。
本稿では,アルゴリズムインフォームドグラフニューラルネットワーク(AIGNN)を提案する。
論文 参考訳(メタデータ) (2024-08-05T19:25:05Z) - Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
本稿では,教師なし型ネットワークフローの特定のためのGNNの適用について検討する。
我々の知る限り、NIDSにおけるネットワークフローのマルチクラス分類のための最初のGNNベースの自己教師方式である。
論文 参考訳(メタデータ) (2024-03-03T12:34:13Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
本研究は,有向グラフと重み付きグラフを用いて,m文を一般化した伝播を定義することによって,従来のメッセージパッシング(中心からグラフ学習)の限界に対処する。
この分野ではじめて、データセットにおける学習された伝播パターンの予備的な探索を含む。
論文 参考訳(メタデータ) (2024-02-13T14:13:17Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection [7.070726553564701]
グラフから異常ノードを検出するための教師なしグラフエンコーダデコーダモデルを提案する。
符号化段階では、クラスタ割り当て行列を見つけるためにLCPoolと呼ばれる新しいプール機構を設計する。
復号段階ではLCUnpoolと呼ばれるアンプール演算を提案し,元のグラフの構造と結節の特徴を再構築する。
論文 参考訳(メタデータ) (2023-08-15T13:49:12Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
モデルの勾配は、半環を用いたより一般的な定式化の特別な場合であることを示す。
この観測により、バックプロパゲーションアルゴリズムを一般化し、他の解釈可能な統計を効率的に計算することができる。
論文 参考訳(メタデータ) (2023-07-06T15:19:53Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Decomposing neural networks as mappings of correlation functions [57.52754806616669]
本研究では,ディープフィードフォワードネットワークによって実装された確率分布のマッピングについて検討する。
ニューラルネットワークで使用できる異なる情報表現と同様に、データに不可欠な統計を識別する。
論文 参考訳(メタデータ) (2022-02-10T09:30:31Z) - Relative gradient optimization of the Jacobian term in unsupervised deep
learning [9.385902422987677]
データを正しく記述した表現的確率モデルを学習することは、機械学習におけるユビキタスな問題である。
このタスクには深度モデルが広く使用されているが、その最大可能性に基づくトレーニングでは、ジャコビアンの対数行列式を推定する必要がある。
このようなニューラルネットワークの正確なトレーニングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-26T16:41:08Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。