Discrete-Modulated Continuous-Variable Quantum Key Distribution in Satellite-to-Ground Communication
- URL: http://arxiv.org/abs/2406.14166v1
- Date: Thu, 20 Jun 2024 10:10:48 GMT
- Title: Discrete-Modulated Continuous-Variable Quantum Key Distribution in Satellite-to-Ground Communication
- Authors: Shi-Gen Li, Chen-Long Li, Wen-Bo Liu, Hua-Lei Yin, Zeng-Bing Chen,
- Abstract summary: Continuous-variable quantum key distribution is a strong candidate for space-ground quantum communication.
We derive key rates for discrete-modulated continuous-variable quantum key distribution protocols in free-space channel environments.
- Score: 1.9345871987291465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite-to-ground quantum communication constitutes the cornerstone of the global quantum network, heralding the advent of the future of quantum information. Continuous-variable quantum key distribution is a strong candidate for space-ground quantum communication due to its simplicity, stability, and ease of implementation, especially for the robustness of space background light noise. Recently, the discrete-modulated continuous-variable protocol has garnered increased attention, owing to its lower implementation requirements, acceptable security key rate, and pronounced compatibility with extant infrastructures. Here, we derive key rates for discrete-modulated continuous-variable quantum key distribution protocols in free-space channel environments across various conditions through numerical simulation, revealing the viability of its application in satellite-to-ground communication.
Related papers
- Security Enhancement of Quantum Communication in Space-Air-Ground Integrated Networks [7.404591865944407]
Quantum teleportation achieves the transmission of quantum states through quantum channels.
We propose a practical solution that ensures secure information transmission even in the presence of errors in both classical and quantum channels.
arXiv Detail & Related papers (2024-10-22T14:27:21Z) - Quantum integrated sensing and communication via entanglement [4.854937611943075]
We propose a novel quantum integrated sensing and communication protocol, which achieves quantum sensing under the Heisenberg limit.
We have theoretically proven its security against eavesdroppers.
arXiv Detail & Related papers (2024-04-12T09:17:43Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Satellite Quantum Communications: Fundamental Bounds and Practical
Security [0.0]
We apply and extend recent results in free-space quantum communications to determine the ultimate limits at which secret bits can be distributed via satellites.
We study the composable finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution.
We present a study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain of ideal quantum repeaters.
arXiv Detail & Related papers (2020-12-03T06:53:57Z) - Limits and Security of Free-Space Quantum Communications [0.0]
We show that the composable secret-key rate achievable by a suitable coherent-state protocol is sufficiently close to these limits.
Our work provides analytical tools for assessing the composable finite-size security of coherent-state protocols in general conditions.
arXiv Detail & Related papers (2020-10-08T18:00:02Z) - Implementation of Continuous-Variable Quantum Key Distribution with Composable and One-Sided-Device-Independent Security Against Coherent Attacks [0.0]
State-of-the-art quantum key distribution requires composable security against coherent attacks.
We present an implementation of continuous-variable quantum key distribution satisfying these requirements.
Our work is a crucial step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
arXiv Detail & Related papers (2014-06-24T09:20:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.