論文の概要: Unsupervised Joint $k$-node Graph Representations with Compositional
Energy-Based Models
- arxiv url: http://arxiv.org/abs/2010.04259v1
- Date: Thu, 8 Oct 2020 21:13:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 11:21:09.411536
- Title: Unsupervised Joint $k$-node Graph Representations with Compositional
Energy-Based Models
- Title(参考訳): 構成エネルギーモデルを用いた非教師付き$k$-nodeグラフ表現
- Authors: Leonardo Cotta, Carlos H. C. Teixeira, Ananthram Swami, Bruno Ribeiro
- Abstract要約: 我々はMHM-GNNを提案する。これは、$k$-node表現とエネルギーモデルを組み合わせた帰納的非教師付きグラフ表現手法である。
有限サンプルアンバイアス付マルコフチェインモンテカルロ推定器を用いて、損失上界を最適化する。
実験により、MHM-GNNの教師なしMHM-GNN表現は、既存の文献のアプローチよりも教師なし表現が優れていることが示された。
- 参考スコア(独自算出の注目度): 24.031710271780632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing Graph Neural Network (GNN) methods that learn inductive unsupervised
graph representations focus on learning node and edge representations by
predicting observed edges in the graph. Although such approaches have shown
advances in downstream node classification tasks, they are ineffective in
jointly representing larger $k$-node sets, $k{>}2$. We propose MHM-GNN, an
inductive unsupervised graph representation approach that combines joint
$k$-node representations with energy-based models (hypergraph Markov networks)
and GNNs. To address the intractability of the loss that arises from this
combination, we endow our optimization with a loss upper bound using a
finite-sample unbiased Markov Chain Monte Carlo estimator. Our experiments show
that the unsupervised MHM-GNN representations of MHM-GNN produce better
unsupervised representations than existing approaches from the literature.
- Abstract(参考訳): 帰納的非教師付きグラフ表現を学習する既存のグラフニューラルネットワーク(GNN)手法は、グラフ内の観測されたエッジを予測することにより、学習ノードとエッジ表現に焦点を当てる。
このような手法は下流ノード分類タスクの進歩を示しているが、大きな$k$-node集合、$k{>}2$を共同で表すには効果がない。
我々は,k$ノード表現とエネルギーベースモデル(ハイパーグラフマルコフネットワーク)とgnnを組み合わせた誘導的非教師なしグラフ表現手法であるmhm-gnnを提案する。
この組み合わせから生じる損失の難易度に対処するため、有限個の非バイアスマルコフ連鎖モンテカルロ推定器を用いて、損失上限を上限として最適化を行う。
実験の結果,MHM-GNNの教師なしMHM-GNN表現は,既存の文献よりも教師なし表現が優れていることがわかった。
関連論文リスト
- Higher-Order GNNs Meet Efficiency: Sparse Sobolev Graph Neural Networks [6.080095317098909]
グラフニューラルネットワーク(GNN)は,グラフ内のノード間の関係をモデル化する上で,非常に有望であることを示す。
これまでの研究では、主にグラフ内の高次隣人からの情報を活用しようと試みてきた。
我々は基本的な観察を行い、ラプラシア行列の正則とアダマールの力はスペクトルでも同様に振る舞う。
グラフ信号のスパースなソボレフノルムに基づく新しいグラフ畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2024-11-07T09:53:11Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
統計的観点から,ノードプロファイルとトポロジの関係を定量化するAMUDを提案する。
また、AMUDのための新しい有向グラフ学習パラダイムとしてADPAを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:54:11Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - OrthoReg: Improving Graph-regularized MLPs via Orthogonality
Regularization [66.30021126251725]
グラフニューラルネットワーク(GNN)は現在、グラフ構造データのモデリングにおいて支配的である。
グラフ正規化ネットワーク(GR-MLP)はグラフ構造情報をモデル重みに暗黙的に注入するが、その性能はほとんどのタスクにおいてGNNとほとんど一致しない。
GR-MLPは,最大数個の固有値が埋め込み空間を支配する現象である次元崩壊に苦しむことを示す。
次元崩壊問題を緩和する新しいGR-MLPモデルであるOrthoRegを提案する。
論文 参考訳(メタデータ) (2023-01-31T21:20:48Z) - A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware
Learning on Graphs [49.76175970328538]
本稿では,エッジワイド・キャリブレーション・エラー(ECE)とアライアンス・ディスアグリーECEを新たに提案し,ノードワイド・セッティングを超えるグラフの不確実性推定の基準を提供する。
実験により,提案したエッジワイドメトリクスがノードワイズの結果を補完し,さらなる洞察を得ることが実証された。
論文 参考訳(メタデータ) (2022-10-27T16:12:58Z) - Understanding Non-linearity in Graph Neural Networks from the
Bayesian-Inference Perspective [33.01636846541052]
グラフニューラルネットワーク(GNN)は、グラフよりも多くの予測タスクにおいて優位性を示している。
ノード分類タスクにおけるGNNにおける非線形性の関数について検討する。
論文 参考訳(メタデータ) (2022-07-22T19:36:12Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Optimal Transport Graph Neural Networks [31.191844909335963]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、集約グラフ表現に平均または総和ノードを埋め込む。
本稿では,パラメトリックプロトタイプを用いたグラフ埋め込み計算モデルOT-GNNを紹介する。
論文 参考訳(メタデータ) (2020-06-08T14:57:39Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。